Меню Рубрики

Как сформировалась кислородная атмосфера земли кратко. Атмосфера земли

Согласно наиболее распространённой теории, атмосфера
Земли во времени пребывала в трёх различных составах.
Первоначально она состояла из лёгких газов (водорода и
гелия), захваченных из межпланетного пространства. Это так
называемая первичная атмосфера (около четырех миллиардов
лет назад).

На следующем этапе активная вулканическая деятельность
привела к насыщению атмосферы и другими газами, кроме
водорода (углекислым газом, аммиаком, водяным паром). Так
образовалась вторичная атмосфера (около трех миллиардов
лет до наших дней). Эта атмосфера была восстановительной.
Далее процесс образования атмосферы определялся сле-
дующими факторами:
- утечка легких газов (водорода и гелия) в межпланетное
пространство;
- химические реакции, происходящие в атмосфере под влия-
нием ультрафиолетового излучения, грозовых разрядов и
некоторых других факторов.
Постепенно эти факторы привели к образованию третич-
ной атмосферы, характеризующейся гораздо меньшим содер-
жанием водорода и гораздо большим - азота и углекислого
газа (образованы в результате химических реакций из аммиака
и углеводородов).
Состав атмосферы начал радикально меняться с появлени-
ем на Земле живых организмов, в результате фотосинтеза, со-
провождающегося выделением кислорода и поглощением уг-
лекислого газа.
рвоначально кислород расходовался
на окисление восстановленных соединений - аммиака, угле-
водородов, закисной формы железа, содержавшейся в океанах
и др. По окончании данного этапа содержание кислорода
в атмосфере стало расти. Постепенно образовалась современ-
ная атмосфера, обладающая окислительными свойствами.
Поскольку это вызвало серьезные и резкие изменения
многих процессов, протекающих в атмосфере, литосфере и
биосфере, это событие получило название Кислородная ката-
строфа.
В настоящее время атмосфера Земли состоит в основном из
газов и различных примесей (пыль, капли воды, кристаллы
льда, морские соли, продукты горения). Концентрация газов,
составляющих атмосферу, практически постоянна, за исклю-
чением воды (Н 2 О) и углекислого газа (СО 2).

Источник: class.rambler.ru


Следовательно, формирование современной (кислородной) атмосферы Земли немыслимо без живых систем, т. е. наличие кислорода является следствием развития биосферы. Гениальное предвидение В. И. Вернадского о преобразующей лик Земли роли биосферы находит все большее и большее подтверждение. Однако до сих пор нам неясны пути происхождения жизни. В. И. Вернадский говорил: «Перед нами в течение тысяч поколений стоит загадка неразрешенная, но принципиально разрешимая - загадка жизни».

Биологи считают, что спонтанное возникновение жизни возможно только в восстановительной среде, однако, по представлениям одного из них - М. Руттена,- содержание кислорода в смеси газов до 0,02% еще не мешает протеканию абиогенных синтезов. Таким образом, понятия о восстановительной и окислительной атмосфере у геохимиков и биологов разные. Назовем атмосферу, содержащую следы кислорода, нейтральной, в которой могли бы появиться первые протеиновые скопления, которые в принципе могли использовать (усваивать) для своего питания абиогенные аминокислоты, возможно, по каким-то причинам только изомеры.

Однако вопрос не в том, как питались эти аминогетеротрофы (организмы, использующие в качестве питания аминокислоты), а как могла образоваться самоорганизующаяся материя, эволюция которой обладает отрицательной энтропией. Последнее, правда, не так уже редко во Вселенной. Разве образование Солнечной системы и нашей Земли, в частности, не идет против хода энтропии? Еще Фалес из Мицы в своем трактате писал: «Вода - первопричина всех вещей». И действительно, сначала должна была образоваться гидросфера, чтоб стать колыбелью жизни. Об этом много говорил В. И. Вернадский и другие великие ученые современности.


В. И. Вернадскому было не совсем ясно, почему живая материя представлена только левыми изомерами органических молекул и почему в любом неорганическом синтезе мы получаем примерно равную смесь левых и правых изомеров. А если и получаем обогащение (например, в поляризованном свете) теми или иными приемами, то в чистом виде выделить их не можем.

Как же могли образоваться довольно сложные органические соединения типа белков, протеинов, нуклеиновых кислот и других комплексов организованных элементов, состоящих из одних левых изомеров?

Источник: pochemuha.ru

Основные свойства атмосферы Земли

Атмосфера - это наш защитный купол от всяческого рода угроз из космоса. В ней сгорает большая часть метеоритов, которые падают на планету, а ее озоновый слой служит фильтром против ультрафиолетового излучения Солнца, энергия которого смертельна для живых существ. Кроме того, именно атмосфера поддерживает комфортную температуру у поверхности Земли - если бы не парниковый эффект, достигаемый за счет многократного отражения солнечных лучей от облаков, Земля была бы в среднем на 20-30 градусов холоднее. Кругооборот воды в атмосфере и движение воздушных масс не только уравновешивают температуру и влажность, но и создают земное разнообразие ландшафтных форм и минералов - такого богатства не встретить нигде в Солнечной системе.


Масса атмосферы составляет 5,2×10 18 килограмм. Хотя газовые оболочки распространяются на многие тысячи километров от Земли, ее атмосферой считаются лишь те, которые вращаются вокруг оси со скоростью, равной скорости вращения планеты. Таким образом, высота атмосферы Земли составляет около 1000 километров, плавно переходя в космическое пространство в верхнем слое, экзосфере (от др. греческого «внешний шар»).

Состав атмосферы Земли. История развития

Хотя воздух и кажется однородным, он представляет собой смесь разнообразных газов. Если брать только те, которые занимают хотя бы тысячную долю объема атмосферы, их уже будет 12. Если же смотреть на общую картину, то в воздухе одновременно находится вся таблица Менделеева!

Однако добиться такого разнообразия Земле удалось не сразу. Только благодаря уникальным совпадениям химических элементов и наличию жизни атмосфера Земли стала столь сложной. Наша планета сохранила геологические следы этих процессов, что позволяет нам заглянуть на миллиарды лет назад:

  • Первыми газами, которые окутали молодую Землю 4,3 миллиарда лет назад, были водород и гелий - фундаментальные составляющие атмосферы газовых гигантов вроде Юпитера.
    о самые элементарные вещества - из них состояли остатки туманности, родившей Солнце и окружающие его планеты, и они обильно оседали вокруг гравитационных центров-планет. Их концентрация была не очень высока, а низкая атомная масса позволяла им улетучиваться в космос, что они делают до сих пор. На сегодняшний день их общая удельная масса составляет 0,00052% от общей массы атмосферы Земли (0,00002% водорода и 0,0005% гелия), что совсем мало.
  • Однако внутри самой Земли крылась уйма веществ, которые стремились вырваться из раскаленных недр. Из вулканов было выброшено громадное количество газов - в первую очередь аммиак, метан и углекислый газ, а также сера. Аммиак и метан впоследствии разложились на азот, который ныне занимает львиную долю массы атмосферы Земли - 78%.
  • Но настоящая революция в составе атмосферы Земли произошла вместе с приходом кислорода. Он появлялся и естественным путем - раскаленная мантия молодой планеты активно избавлялась от газов, запертых под земной корой. Кроме того, водяные пары, извергаемые вулканами, расщеплялись под воздействием солнечного ультрафиолета на водород и кислород.

Однако такой кислород не мог долго задерживаться в атмосфере. Он вступал в реакции с угарным газом, свободным железом, серой и множеством других элементов на поверхности планеты - а высокие температуры и солнечное излучение катализировало химические процессы. Изменило эту ситуацию только появление живых организмов.

  • Во-первых, они начали выделять столько кислорода, что он не только окислил все вещества на поверхности, но и начал накапливаться - за пару миллиардов лет его количество выросло с ноля до 21% процента всей массы атмосферы.
  • Во-вторых, живые организмы активно использовали углерод атмосферы для построения собственных скелетов. В итоге их деятельности земная кора пополнилась целыми геологическими пластами органических материалов и ископаемых, а углекислого газа стало куда меньше
  • И, наконец, избыток кислорода сформировал озоновый слой, который стал защищать живые организмы от ультрафиолета. Жизнь стала эволюционировать активнее и приобретать новые, более сложные формы - среди бактерий и водорослей стали появляться высокоорганизованные существа. Сегодня в озон занимает всего 0,00001% всей массы Земли.

Вам уже наверняка известно, что синий цвет неба на Земле тоже создается кислородом - из всего радужного спектра Солнца он лучше всего рассеивает короткие волны света, отвечающие за синий цвет. Этот же эффект действует в космосе - на расстоянии Земля будто окутывается голубой дымкой, а издали и вовсе превращается в синюю точку.

Кроме того, в атмосфере в значительном количестве присутствуют благородные газы. Среди них больше всего аргона, доля которого в атмосфере составляет 0,9–1%. Его источник - ядерные процессы в глубинах Земли, а попадает на поверхность он через микротрещины в литосферных плитах и вулканические извержения (таким же образом появляется гелий в атмосфере). Из-за своих физических особенностей благородные газы поднимаются в верхние слои атмосферы, где улетучиваются в космическое пространство.


Как мы можем видеть, состав атмосферы Земли менялся уже не раз, и притом очень сильно - но на это понадобились миллионы лет. С другой стороны, жизненно важные явления очень устойчивы - озоновый слой будет существовать и функционировать, даже если на Земле будет в 100 раз меньше кислорода. На фоне общей истории планеты, деятельность человека не оставила серьезных следов. Однако в локальных масштабах цивилизация способна создавать проблемы - по крайней мере, для себя. Загрязнители воздуха уже сделали жизнь жителей китайского Пекина опасной - а громадные облака грязного тумана над большими городами видны даже из космоса.

Структура атмосферы

Однако экзосфера - это не единственный особый слой нашей атмосферы. Их существует немало, и каждый из них обладает своими уникальными характеристиками. Давайте рассмотрим несколько основных:

Тропосфера

Самый нижний и наиболее плотный слой атмосферы называется тропосферой. Читатель статьи сейчас находится именно в его «придонной» части - если, конечно, он не является одним из 500 тысяч человек, которые летят прямо сейчас в самолете. Верхний предел тропосферы зависит от широты (помните о центробежной силе вращения Земли, из-за которой планета шире на экваторе?) и колеблется от 7 километров на полюсах до 20 километров на экваторе. Также размеры тропосферы зависит от сезона - чем теплее воздух, тем выше поднимается верхний предел.


Название «тропосфера» происходит от древнегреческого слова «tropos», которое переводится как «поворот, изменение». Это достаточно точно отображает свойства слоя атмосферы - он наиболее динамичный и продуктивный. Именно в тропосфере собираются облака и циркулирует вода, создаются циклоны и антициклоны и генерируются ветра - происходят все те процессы, которые мы называем «погода» и «климат». Кроме того, это самый массивный и плотный слой - на него приходится 80% массы атмосферы и почти все содержание воды в ней. Тут же обитает большая часть живых организмов.

Всем известно, что чем выше подниматься, тем холоднее становится. Это действительно так - каждые 100 метров вверх температура воздуха падает на 0,5-0,7 градуса. Тем не менее принцип работает только в тропосфере - дальше температура с ростом высоты начинает повышаться. Зона между тропосферой и стратосферой, где температура остается неизменной, называется тропопаузой. А еще с высотой убыстряется течение ветра - на 2–3 км/с на километр ввысь. Поэтому пара- и дельтапланеристы предпочитают для полетов возвышенные плато и горы - там всегда удастся «поймать волну».

Уже упомянутое воздушное дно, где атмосфера контактирует с литосферой, называется приземным пограничным слоем. Его роль в циркуляции атмосферы невероятно велика - отдача тепла и излучения от поверхности создает ветры и перепады давления, а горы и другие неровности рельефа направляют и разделяют их. Тут же происходит водообмен - за 8–12 дней вся вода, взятая из океанов и поверхности, возвращается обратно, превращая тропосферу в своеобразный водный фильтр.

  • Интересный факт - на водообмене с атмосферой завязан важный процесс в жизнедеятельности растений - транспирация. С ее помощью флора планеты активно влияет на климат - так, большие зеленые массивы смягчают погоду и перепады температуры. Растения в насыщенных водой местах испаряют 99% воды, взятой из почвы. К примеру, гектар пшеницы за лето выбрасывает в атмосферу 2–3 тысячи тонн воды - это значительно больше, чем могла бы отдать безжизненная почва.

Нормальное давление у поверхности Земли - около 1000 миллибар. Эталоном считается давление в 1013 мБар, которое составляет одну «атмосферу» - с этой единицей измерения вы уже наверняка сталкивались. С ростом высоты давление стремительно падает: у границ тропосферы (на высоте 12 километров) оно составляет уже 200 мБар, а на высоте 45 километров и вовсе падает до 1 мБар. Поэтому не странно, что именно в насыщенной тропосфере собрано 80% все массы атмосферы Земли.

Стратосфера

Слой атмосферы, располагающийся в диапазоне между 8 км высоты (на полюсе) и 50 км (на экваторе), называется стратосферой. Название происходит от др. греческого слова «stratos», которое значит «настил, слой». Это крайне разреженная зона атмосферы Земли, в которой почти нет водного пара. Давление воздуха в нижней части стратосферы в 10 раз меньше приповерхностного, а в верхней части - в 100 раз.


В разговоре о тропосферу мы уже узнали, что температура в ней понижается в зависимости от высоты. В стратосфере все происходит с точностью до наоборот - с набором высоты температура вырастает от –56°C до 0–1°С. Прекращается нагрев в стратопаузе, границе между страто- и мезосферами.

Жизнь и человек в стратосфере

Пассажирские лайнеры и сверхзвуковые самолеты обычно летают в нижних слоях стратосферы - это не только защищает их от нестабильности воздушных потоков тропосферы, но и упрощает их движение за счет малого аэродинамического сопротивления. А низкие температуры и разреженность воздуха позволяют оптимизировать потребление топлива, что особенно важно для дальних перелетов.

Однако существует технический предел высоты для самолета - приток воздуха, которого в стратосфере так мало, необходим для работы реактивных двигателей. Соответственно, для достижения нужного давления воздуха в турбине самолету приходится двигаться быстрее скорости звука. Поэтому высоко в стратосфере (на высоте 18–30 километров) могут передвигаться только боевые машины и сверхзвуковые самолеты вроде «Конкордов». Так что основными «обитателями» стратосферы являются метеорологические зонды, прикрепленные к воздушным шарам - там они могут оставаться длительное время, собирая информацию о динамике нижележащей тропосферы.

Читателю уже наверняка известно, что вплоть до самого озонового слоя в атмосфере встречаются микроорганизмы - так называемый аэропланктон. Однако не одни бактерии способны выживать в стратосфере. Так, однажды в двигатель самолета на высоте 11,5 тысяч метров попал африканский сип - особая разновидность грифа. А некоторые утки во время миграций спокойно пролетают над Эверестом.

Но самым большим существом, побывавшим в стратосфере, остается человек. Текущий рекорд по высоте был установлен Аланом Юстасом - вице-президентом компании Google. В день прыжка ему было 57 лет! На специальном воздушном шаре он поднялся на высоту 41 километр над уровнем моря, а затем спрыгнул вниз с парашютом. Скорость, которую он развил в пиковый момент падения, составила 1342 км/ч - больше скорости звука! Одновременно Юстас стал первым человеком, самостоятельно преодолевшим звуковой порог скорости (не считая скафандра для поддержки жизнедеятельности и парашютов для приземления в целом виде).

  • Интересный факт - для того чтобы отсоединиться от воздушного шара, Юстасу понадобилось взрывное устройство - вроде того, что используется космическими ракетами при отсоединении ступеней.

Озоновый слой

А еще на границе между стратосферой и мезоферой находится знаменитый озоновый слой. Он защищает поверхность Земли от воздействия ультрафиолетовых лучей, а заодно служит верхней границей распространения жизни на планете - выше него температура, давление и космическое излучение быстро положат конец даже самым стойким бактериям.

Откуда же взялся этот щит? Ответ невероятен - он был создан живыми организмами, точнее - кислородом, которые разнообразные бактерии, водоросли и растения выделяли с незапамятных времен. Поднимаясь высоко по атмосфере, кислород контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию. В итоге из обычного кислорода, которым мы дышим, O 2 , получается озон - O 3 .

Парадоксально, но созданный излучением Солнца озон защищает нас от этого же излучения! А еще озон не отражает, а поглощает ультрафиолет - тем самым он нагревает атмосферу вокруг себя.

Мезосфера

Мы уже упоминали, что над стратосферой - точнее, над стратопаузой, пограничной прослойкой стабильной температуры - находится мезосфера. Этот относительно небольшой слой располагается между 40–45 и 90 километров высоты и является самым холодным местом в нашей планете - в мезопаузе, верхнем слое мезосферы, воздух охлаждается до –143°C.

Мезосфера является наименее изученной частью атмосферы Земли. Экстремально малое давление газов, которое от тысячи до десяти тысяч раз ниже поверхностного, ограничивает движение воздушных шаров - их подъемная сила доходит до нуля, и они попросту зависают на месте. То же происходит с реактивными самолетами - аэродинамика крыла и корпуса самолета теряют свой смысл. Поэтому летать в мезосфере могут либо ракеты, либо самолеты с ракетными двигателями - ракетопланы. К таким относится ракетоплан X-15, который удерживает позицию самого быстрого самолета в мире: он достиг высоты в 108 километров и скорости 7200 км/ч - в 6,72 раза больше скорости звука.

Однако рекордный полет X-15 составил всего 15 минут. Это символизирует общую проблему движущихся в мезосфере аппаратов - они слишком быстры, чтобы провести какие-либо основательные исследования, и находятся на заданной высоте недолго, улетая выше или падая вниз. Также мезосферу нельзя исследовать при помощи спутников или суборбитальных зондов - пусть давление в этом слое атмосферы и низкое, оно тормозит (а порой и сжигает) космические аппараты. Из-за этих сложностей ученые часто называют мезосферу «незнайкосферой» (от англ. «ignorosphere», где «ignorance» - невежество, незнание).

А еще именно в мезосфере сгорает большинство метеоров, падающих на Землю - именно там вспыхивает метеоритный поток Персеиды, известный как «августовский звездопад». Световой эффект происходит тогда, когда космическое тело входит в атмосферу Земли под острым углом со скоростью больше 11 км/ч - от силы трения метеорит загорается.

Растеряв свою массу в мезосфере, остатки «пришельцев» оседают на Землю в виде космической пыли - каждый день на планету попадает от 100 до 10 тысяч тонн метеоритного вещества. Поскольку отдельные пылинки очень легкие, на путь к поверхности Земли у них уходит до одного месяца! Попадая в тучи, они утяжеляют их и даже иногда вызывают дожди - как вызывает их вулканический пепел или частицы от ядерных взрывов. Однако сила влияния космической пыли на дождеобразование считается небольшой - даже 10 тысяч тонн маловато, чтобы серьезно изменить естественную циркуляцию атмосферы Земли.

Термосфера

Над мезосферой, на высоте 100 километров над уровнем моря, проходит линия Кармана - условная граница между Землей и космосом. Хотя там и присутствуют газы, которые вращаются вместе с Землей и технически входят в атмосферу, их количество выше линии Кармана незримо мало. Поэтому любой полет, который выходит за высоту 100 километров, уже считается космическим.

С линией Кармана совпадает нижняя граница самого протяженного слоя атмосферы - термосферы. Она поднимается до высоты 800 километров и отличается чрезвычайно высокой температурой - на высоте 400 километров она достигает максимума в 1800°C!

Горячо, не правда ли? При температуре в 1538°C начинает плавиться железо - как же тогда космические аппараты остаются целыми в термосфере? Все дело в чрезвычайно низкой концентрации газов в верхней атмосфере - давление посередине термосферы в 1000000 меньше концентрации воздуха у поверхности Земли! Энергия отдельно взятых частиц высока - но расстояние между ними огромное, и космические аппараты фактически находятся в вакууме. Это, впрочем, не помогает им избавляться от тепла, которое выделяют механизмы - для тепловыделения все космические аппараты оснащены радиаторами, которые излучают избыточную энергию.

  • На заметку. Когда речь идет о высоких температурах, всегда стоит учитывать плотность раскаленной материи - так, ученые на Андронном Коллайдере действительно могут нагреть вещество до температуры Солнца. Но очевидно, что это будут отдельные молекулы - одного грамма вещества звезды хватило бы для мощнейшего взрыва. Поэтому не стоит верить желтой прессе, которая обещает нам скорый конец света от «рук» Коллайдера, как и не стоит бояться жара в термосфере.

Термосфера и космонавтика

Термосфера фактически является открытым космосом - именно в ее пределах пролегала орбита первого советского «Спутника». Там же был апоцентр - наивысшая точка над Землей - полета корабля «Восток-1» с Юрием Гагариным на борту. Многие искусственные спутники для изучения поверхности Земли, океана и атмосферы, вроде спутников Google Maps, тоже запускаются на эту высоту. Поэтому если речь идет о НОО (Низкой Опорной Орбите, расхожий термин в космонавтике), в 99% случаев она находится в термосфере.

Орбитальные полеты людей и животных не просто так происходят в термосфере. Дело в том, что в ее верхней части, на высоте от 500 километров, простираются радиационные пояса Земли. Именно там заряженные частицы солнечного ветра ловятся и накапливаются магнитосферой. Длительное нахождение в радиационных поясах приносит непоправимый вред живым организмам и даже электронике - поэтому все высокоорбитальные аппараты обладают защитой от радиации.

Полярные сияния

В полярных широтах часто появляется зрелищное и грандиозное зрелище - полярные сияния. Они выглядят как длинные светящиеся дуги разнообразных цветов и форм, которые переливаются в небе. Их появлению Земля обязана своей магнитосферой - а, точнее, прорехами в ней возле полюсов. Заряженные частицы солнечного ветра прорываются внутрь, заставляя атмосферу светиться. Полюбоваться на самые зрелищные сияния и узнать подробнее их происхождение можно тут.

Сейчас сияния являются обыденностью для жителей приполярных стран, таких как Канада или Норвегия, а также обязательным пунктом в программе любого туриста - однако раньше им приписывались сверхъестественные свойства. В разноцветных огнях людям древности виделись врата в рай, мифические существа и костры духов, а их поведение считали прорицаниями. И наших предков можно понять - даже образование и вера в собственный разум порой не могут сдержать благоговения перед силами природы.

Экзосфера

Последний слой атмосферы Земли, нижняя граница которого проходит на высоте 700 километров - это экзосфера (от др. греческого коря «экзо» - вне, снаружи). Она невероятно рассеянная и состоит преимущественно из атомов легчайшего элемента - водорода; также попадаются отдельные атомы кислорода и азота, которые сильно ионизированы всепроникающим излучением Солнца.

Размеры экзосферы Земли невероятно велики - она перерастает в корону Земли, геокорону, которая растянута до 100 тысяч километров от планеты. Она очень разрежена - концентрация частиц в миллионы раз меньше плотности обычного воздуха. Но если Луна заслонит Землю для отдаленного космического корабля, то корона нашей планеты будет видна, как видна нам корона Солнца при его затмении. Однако наблюдать это явление пока не удавалось.

Выветривание атмосферы

А еще именно в экзосфере происходит выветривание атмосферы Земли - из-за большого расстояния от гравитационного центра планеты частички легко отрываются от общей газовой массы и выходят на собственные орбиты. Это явление называется диссипацией атмосферы. Наша планета ежесекундно теряет 3 килограмма водорода и 50 грамм гелия из атмосферы. Только эти частицы достаточно легки, чтобы покинуть общую газовую массу.

Несложные расчеты показывают, что Земля ежегодно теряет около 110 тысяч тонн массы атмосферы. Опасно ли это? На самом деле нет - мощности нашей планеты по «производству» водорода и гелия превышают темпы потерь. Кроме того, часть потерянного вещества со временем возвращается обратно в атмосферу. А важные газы вроде кислорода или углекислого газа попросту слишком тяжелы, чтобы массово покидать Землю - поэтому не стоит бояться, что атмосфера нашей Земли улетучится.

  • Интересный факт - «пророки» конца света часто говорят, что если ядро Земли перестанет вращаться, атмосфера быстро выветрится под напором солнечного ветра. Однако наш читатель знает, что удерживают атмосферу возле Земли силы гравитации, которые будут действовать вне зависимости от вращения ядра. Ярким доказательством этого служит Венера, у которой неподвижное ядро и слабое магнитное поле, но зато атмосфера в 93 раза плотнее и тяжелее земной. Однако это не значит, что прекращение динамики земного ядра безопасно - тогда исчезнет магнитное поле планеты. Его роль важна не столько в сдерживании атмосферы, сколько в защите от заряженных частиц солнечного ветра, которые легко превратят нашу планету в радиоактивную пустыню.

Облака

Вода на Земле существует не только в необъятном океане и многочисленных реках. Около 5,2 ×10 15 килограмм воды находится в атмосфере. Она присутствует практически везде - доля пара в воздухе колеблется от 0,1% до 2,5% объема в зависимости от температуры и местоположения. Однако больше всего воды собрано в облаках, где она хранится не только в виде газа, но и в маленьких капельках и ледяных кристаллах. Концентрация воды в тучах достигает 10г/м 3 - а так как облака достигают объема в несколько кубических километров, масса воды в них исчисляется десятками и сотнями тонн.

Облака - это самое заметное образование нашей Земли; они видны даже с Луны, где очертания континентов размываются перед невооруженным глазом. И это не странно - ведь тучами постоянно покрыто больше 50% Земли!

В теплообмене Земли облака играют невероятно важную роль. Зимой они захватывают солнечные лучи, повышая температуру под собой за счет парникового эффекта, а летом экранируют громадную энергию Солнца. Также облака уравновешивают перепады температуры между днем и ночью. К слову, именно из-за их отсутствия пустыни так сильно остывают ночью - все накопленное песком и скалами тепло беспрепятственно улетает ввысь, когда в других регионах его удерживают тучи.

Преобладающее большинство туч формируются у поверхности Земли, в тропосфере, однако в своем дальнейшем развитии они принимают самые разнообразные формы и свойства. Их разделение весьма полезно - появление туч различных видов может не только помочь предсказывать погоду, но и определять наличие примесей в воздухе! Давайте рассмотрим основные типы облаков подробнее.

Облака нижнего яруса

Тучи, которые опускаются ниже всего над землей, относят к облакам нижнего яруса. Им характерна высокая однородность и низкая масса - когда они опускаются на землю, ученые-метеорологи не отделяют их от обычного тумана. Тем не менее разница между ними есть - одни просто заслоняют небо, а другие могут разразиться большими дождями и снегопадами.

  • К тучам, способным дать сильные осадки, относятся слоисто-дождевые облака. Они самые большие среди туч нижнего яруса: их толщина достигает нескольких километров, а линейные измерения превышают тысячи километров. Они представляют собой однородную серую массу - взгляните на небо во время продолжительного дождя, и вы наверняка увидите слоисто-дождевые облака.
  • Другой вид облаков нижнего яруса - это слоисто-кучевые облака, поднимающиеся над землей на 600–1500 метров. Они представляют собой группы из сотен серо-белых туч, разделенных небольшими просветами. Такие облака мы обычно видим в дни переменной облачности. С них редко идет дождь или снег.
  • Последний вид нижних облаков - это обычные слоистые облака; именно они застилают небо в пасмурные дни, когда с неба пускается мелкая морось. Они очень тонкие и низкие - высота слоистых облаков в максимуме достигает 400–500 метров. Их структура очень напоминает строение тумана - опускаясь ночью к самой земле, они часто создают густую утреннюю дымку.

Облака вертикального развития

У туч нижнего яруса есть старшие братья - облака вертикального развития. Хотя их нижняя граница пролегает на небольшой высоте в 800–2000 километров, облака вертикального развития серьезно устремляются вверх - их толщина может достигать 12–14 километров, что подталкивает их верхний предел к границам тропосферы. Еще такие облака называют конвективными: из-за больших размеров вода в них приобретает разную температуру, что порождает конвекцию - процесс перемещения горячих масс наверх, и холодных - вниз. Поэтому в облаках вертикального развития одновременно существуют водный пар, мелкие капельки, снежинки и даже целые кристаллы льда.

  • Основным типом вертикальных облаков являются кучевые облака - громадные белые тучи, напоминающие рваные куски ваты или айсберги. Для их существования необходима высокая температура воздуха - поэтому в средней полосе России они появляются только летом и тают к ночи. Их толщина достигает нескольких километров.
  • Однако когда кучевые облака имеют возможность собраться вместе, они создают куда более грандиозную форму - кучево-дождевые облака. Именно с них идут сильные ливни, град и грозы летом. Существуют они только несколько часов, но при этом разрастаются ввысь до 15 километров - верхняя их часть достигает температуры –10°C и состоит из кристалликов льда.На верхушках самых больших кучево-дождевых туч формируются «наковальни» - плоские области, напоминающие гриб или перевернутый утюг. Это происходит на тех участках, где облако достигает границы стратосферы - физика не позволяет распространяться дальше, из-за чего кучево-дождевая туча расползается вдоль предела высоты.
  • Интересный факт - мощные кучево-дождевые облака формируются в местах извержений вулканов, ударов метеоритов и ядерных взрывов. Эти тучи являются самыми большими - их границы достигают даже стратосферы, выбираясь на высоту 16 километров. Будучи насыщенными испаренной водой и микрочастицами, они извергают мощные грозовые ливни - в большинстве случаев этого достаточно, чтобы потушить связанные с катаклизмом возгорания. Вот такой вот природный пожарный 🙂

Облака среднего яруса

В промежуточной части тропосферы (на высоте от 2–7 километров в средних широтах) находятся облака среднего яруса. Им свойственны большие площади - на них меньше влияют восходящие потоки от земной поверхности и неровности ландшафта - и небольшая толщина в несколько сот метров. Это те облака, которые «наматываются» вокруг острых пиков гор и зависают возле них.

Сами облака среднего яруса делятся на два основных типа - высокослоистые и высококучевые.

  • Высокослоистые облака - это одна из составляющих сложных атмосферных масс. Они представляют собой однородную, серовато-синюю пелену, через которую видны Солнце и Луна - хотя протяженность высокослоистых облаков составляет тысячи километров, их толщина составляет всего несколько километров. Серая плотная пелена, которая видна из иллюминатора самолета, летящего на большой высоте - это именно высокослоистые облака. Часто из них идут длительные дожди или снег.
  • Высококучевые облака, напоминающие мелкие куски рваной ваты или тонкие параллельные полосы, встречаются в теплую пору года - они образуются при поднятии теплых воздушных масс на высоту 2–6 километров. Высококучевые облака служат верным индикатором грядущей перемены погоды и приближения дождя - создать их может не только естественная конвекция атмосферы, но и наступления холодных воздушных масс. С них редко идет дождь - однако тучи могут сбиться вместе и создать одно большое дождевое облако.

К слову о тучах возле гор - на фотографиях (а, может, и вживую) вы наверняка не раз видели круглые облака, напоминающие ватные диски, которые зависают слоями над горной вершиной. Дело в том, что облака среднего яруса часто бывают лентикулярными или линзовидными - разделенными на несколько параллельных слоев. Их создают воздушные волны, образующиеся при обтекании ветром крутых пиков. Линзовидные тучи также особенны тем, что висят на месте даже при самом сильном ветре. Это делает возможным их природа - поскольку такие облака создаются в местах контакта нескольких воздушных потоков, они находятся в относительно стабильной позиции.

Облака верхнего яруса

Последний уровень обычных туч, которые поднимаются до нижних пределов стратосферы, называется верхним ярусом. Высота таких облаков достигает 6–13 километров - там очень холодно, и потому облака на верхнем ярусе состоят из мелких льдинок. Из-за их волокнистой растянутой формы, напоминающей перья, высокие облака также называются перистыми - хотя причуды атмосферы часто придают им форму когтей, хлопьев и даже рыбьих скелетов. Осадки, которые образуются с них, никогда не достигают земли - но само присутствие перистых облаков служит древним способом предсказывать погоду.

  • Чисто-перистые облака являются самыми протяженными среди туч верхнего яруса - длина отдельного волокна может достигать десятка километров. Так как кристаллы льда в тучах достаточно большие, чтобы ощущать на себе притяжение Земли, перистые облака «падают» целыми каскадами - расстояние между верхней и нижней точкой отдельно взятого облака может достигать 3-4 километров! По сути, перистые тучи - это громадные «ледопады». Именно различия в форме кристаллов воды создают их волокнистую, потокообразную форму.
  • В этом классе попадаются и практически невидимые облака - перисто-слоистые облака. Они образуются тогда, когда большие массы приповерхностного воздуха поднимаются ввысь - на большой высоте их влажности достаточно для формирования облака. Когда сквозь них просвечивает Солнце или Луна, появляется гало - сияющий радужный диск из рассеянных лучей.

Серебристые облака

В отдельный класс стоит выделить серебристые облака - самые высокие тучи на Земле. Они забираются на высоту 80 километров, что даже выше стратосферы! Кроме того, они имеют необычный состав - в отличие от других облаков, они состоят из метеоритной пыли и метана, а не воды. Эти тучи видны только после заката или перед рассветом - лучи Солнца, проникающие из-за горизонта, подсвечивают серебристые облака, которые в течение дня остаются невидимыми на высоте.

Серебристые облака представляют собой невероятно красивое зрелище - однако чтобы увидеть их в Северном полушарии, нужны особые условия. А еще их загадку было не так просто разгадать - ученые в бессилии отказывались в них верить, объявляя серебристые тучи оптической иллюзией. Посмотреть на необычные облака и узнать о их секретах вы можете из нашей специальной статьи.

Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов - 78% азота, 21% кислорода и небольшого количества других газов,- например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода - она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы

  1. Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
  2. Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» - такие, как двуокись углерода и водяной пар - останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
  3. Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
  4. Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
  5. Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
  6. Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.

Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.

Вулканическое происхождение

1. Древняя, безвоздушная Земля. 2. Извержение газов.

Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.

Заметное увеличение содержания свободного кислорода в атмосфере Земли 2,4 млрд лет назад, по-видимому, явилось результатом очень быстрого перехода от одного равновесного состояния к другому. Первый уровень соответствовал крайне низкой концентрации О 2 - примерно в 100 000 раз ниже той, что наблюдается сейчас. Второй равновесный уровень мог быть достигнут при более высокой концентрации, составляющей не менее чем 0,005 от современной. Содержание кислорода между двумя этими уровнями характеризуется крайней неустойчивостью. Наличие подобной «бистабильности» позволяет понять, почему в атмосфере Земли было так мало свободного кислорода в течение по крайней мере 300 млн лет после того, как его стали вырабатывать цианобактерии (синезеленые «водоросли»).

В настоящее время атмосфера Земли на 20% состоит из свободного кислорода, который есть не что иное как побочный продукт фотосинтеза цианобактерий, водорослей и высших растений. Очень много кислорода выделяется тропическими лесами, которые в популярных изданиях нередко называют легкими планеты. При этом, правда, умалчивается, что за год тропические леса потребляют практически столько же кислорода, сколько образуют. Расходуется он на дыхание организмов, разлагающих готовое органическое вещество, - в первую очередь бактерий и грибов. Для того, чтобы кислород начал накапливаться в атмосфере, хотя бы часть образованного в ходе фотосинтеза вещества должна быть выведена из круговорота - например, попасть в донные отложения и стать недоступной для бактерий, разлагающих его аэробно, то есть с потреблением кислорода.

Суммарную реакцию оксигенного (то есть «дающего кислород») фотосинтеза можно записать как:
CO 2 + H 2 O + → (CH 2 O) + O 2 ,
где - энергия солнечного света, а (CH 2 O) - обобщенная формула органического вещества. Дыхание же - это обратный процесс, который можно записать как:
(CH 2 O) + O 2 → CO 2 + H 2 O.
При этом будет высвобождаться необходимая для организмов энергия. Однако аэробное дыхание возможно только при концентрации O 2 не меньше чем 0,01 от современного уровня (так называемая точка Пастера). В анаэробных условиях органическое вещество разлагается путем брожения, а на завершающих стадиях этого процесса нередко образуется метан. Например, обобщенное уравнение метаногенеза через образование ацетата выглядит как:
2(СH 2 O) → CH 3 COOH → CH 4 + CO 2 .
Если комбинировать процесс фотосинтеза с последующим разложением органического вещества в анаэробных условиях, то суммарное уравнение будет иметь вид:
CO 2 + H 2 O + → 1/2 CH 4 + 1/2 CO 2 + O 2 .
Именно такой путь разложения органического вещества, видимо, был основным в древней биосфере.

Многие важные детали того, как установилось современное равновесие между поступлением кислорода в атмосферу и его изъятием, остаются невыясненными. Ведь заметное увеличение содержания кислорода, так называемое «Великое окисление атмосферы» (Great Oxidation), произошло только 2,4 млрд лет назад, хотя точно известно, что осуществляющие оксигенный фотосинтез цианобактерии были уже достаточно многочисленны и активны 2,7 млрд лет назад, а возникли они еще раньше - возможно, 3 млрд лет назад. Таким образом, в течение по крайней мере 300 миллионов лет деятельность цианобактерий не приводила к увеличению содержания кислорода в атмосфере .

Предположение о том, что в силу каких-то причин вдруг произошло радикальное увеличение чистой первичной продукции (то есть прироста органического вещества, образованного в ходе фотосинтеза цианобактерий), критики не выдержало. Дело в том, что при фотосинтезе преимущественно потребляется легкий изотоп углерода 12 С, а в окружающей среде возрастает относительное содержание более тяжелого изотопа 13 С. Соответственно, донные отложения, содержащие органическое вещество, должны быть обеднены изотопом 13 С, который скапливается в воде и идет на образование карбонатов. Однако соотношение 12 С и 13 С в карбонатах и в органическом веществе отложений остается неизменным несмотря на радикальные изменения в концентрации кислорода в атмосфере. Значит, всё дело не в источнике О 2 , а в его, как выражаются геохимики, «стоке» (изъятии из атмосферы), который вдруг существенным образом сократился, что и привело к существенному увеличению количества кислорода в атмосфере.

Обычно считается, что непосредственно до «Великого окисления атмосферы» весь образующийся тогда кислород расходовался на окисление восстановленных соединений железа (а потом серы), которых на поверхности Земли было довольно много. В частности, тогда образовались так называемые «полосчатые железные руды». Но недавно Колин Гольдблатт , аспирант Школы наук об окружающей среде при Университете Восточной Англии (Норвич, Великобритания), совместно с двумя коллегами из того же университета пришли к выводу о том, что содержание кислорода в земной атмосфере может быть в одном из двух равновесных состояний: его может быть или очень мало - примерно в 100 тысяч раз меньше, чем сейчас, или уже довольно много (хотя с позиции современного наблюдателя мало) - не менее, чем 0,005 от современного уровня.

В предлагаемой модели они учли поступление в атмосферу как кислорода, так и восстановленных соединений, в частности обратив внимание на соотношение свободного кислорода и метана. Они отметили, что если концентрация кислорода превышает 0,0002 от современного уровня, то часть метана уже может окисляться бактериями метанотрофами согласно реакции:
CH 4 + 2O 2 → CO 2 + 2H 2 O.
Но остальной метан (а его довольно много, особенно при низкой концентрации кислорода) поступает в атмосферу.

Вся система находится в неравновесном состоянии с точки зрения термодинамики. Основной же механизм восстановления нарушенного равновесия - окисление метана в верхних слоях атмосферы гидроксильным радикалом (см. Колебания метана в атмосфере: человек или природа - кто кого , «Элементы», 06.10.2006). Гидроксильный радикал, как известно образуется в атмосфере под действием ультрафиолетового излучения. Но если кислорода в атмосфере много (по меньшей мере 0,005 от современного уровня), то в верхних ее слоях образуется озоновый экран, хорошо защищающий Землю от жестких ультрафиолетовых лучей и вместе с тем мешающий физико-химическому окислению метана.

Авторы приходят к несколько парадоксальному выводу о том, что само по себе существование оксигенного фотосинтеза не является достаточным условием ни для того, чтобы сформировалась богатая кислородом атмосфера, ни для того, чтобы возник озоновый экран. Данное обстоятельство следует учитывать в тех случаях, когда мы пытаемся найти признаки существования жизни на других планетах основываясь на результатах обследования их атмосферы.

Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств. Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы. Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО 2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций (см . ХИМИЯ АТМОСФЕРЫ). Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. Согласно теоретическим оценкам, содержание кислорода, в 25 000 раз меньшее, чем сейчас, уже могло привести к формированию слоя озона со всего лишь вдвое меньшей, чем сейчас, концентрацией. Однако этого уже достаточно, чтобы обеспечить весьма существенную защиту организмов от разрушительного действия ультрафиолетовых лучей.

Вероятно, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды .

Присутствующий в современной атмосфере гелий большей частью является продуктом радиоактивного распада урана, тория и радия. Эти радиоактивные элементы испускают a-частицы, которые представляют собой ядра атомов гелия. Поскольку в ходе радиоактивного распада электрический заряд не образуется и не исчезает, с образованием каждой a-частицы появляются по два электрона, которые, рекомбинируя с a-частицами, образуют нейтральные атомы гелия. Радиоактивные элементы содержатся в минералах, рассеянных в толще горных пород, поэтому значительная часть гелия, образовавшегося в результате радиоактивного распада, сохраняется в них, очень медленно улетучиваясь в атмосферу. Некоторое количество гелия за счет диффузии поднимается вверх в экзосферу, но благодаря постоянному притоку от земной поверхности, объем этого газа в атмосфере почти не меняется. На основании спектрального анализа света звезд и изучения метеоритов можно оценить относительное содержание различных химических элементов во Вселенной. Концентрация неона в космосе примерно в десять миллиардов раз выше, чем на Земле, криптона – в десять миллионов раз, а ксенона – в миллион раз. Отсюда следует, что концентрация этих инертных газов, по-видимому, изначально присутствовавших в земной атмосфере и не пополнявшихся в процессе химических реакций, сильно снизилась, вероятно, еще на этапе утраты Землей своей первичной атмосферы. Исключение составляет инертный газ аргон, поскольку в форме изотопа 40 Ar он и сейчас образуется в процессе радиоактивного распада изотопа калия.

Барометрическое распределение давления.

Общий вес газов атмосферы составляет приблизительно 4,5·10 15 т. Таким образом, «вес» атмосферы, приходящийся на единицу площади, или атмосферное давление, составляет на уровне моря примерно 11 т/м 2 = 1,1 кг/см 2 . Давление, равное Р 0 = 1033,23 г/см 2 = 1013,250 мбар = 760 мм рт. ст. = 1 атм, принимается в качестве стандартного среднего значения атмосферного давления. Для атмосферы в состоянии гидростатического равновесия имеем: dP = –rgdh , это означает, что на интервале высот от h до h + dh имеет место равенство между изменением атмосферного давления dP и весом соответствующего элемента атмосферы с единичной площадью, плотностью r и толщиной dh. В качестве соотношения между давлением Р и температурой Т используется достаточно применимое для земной атмосферы уравнение состояния идеального газа c плотностью r: P = r R T /m, где m – молекулярная масса, и R = 8,3 Дж/(К моль) – универсальная газовая постоянная. Тогда d logP = – (mg/RT )dh = – bdh = – dh /H, где градиент давления в логарифмической шкале. Обратную ему величину Н принять называть шкалой высоты атмосферы.

При интегрировании этого уравнения для изотермичой атмосферы (Т = const) или для ее части, где такое приближение допустимо, получается барометрический закон распределения давления с высотой: P = P 0 exp(–h /H 0), где отсчет высот h производится от уровня океана, где стандартное среднее давление составляет P 0 . Выражение H 0 = RT / mg, называется шкалой высоты, которая характеризует протяженность атмосферы, при условии, что температура в ней всюду одинакова (изотермичная атмосфера). Если атмосфера не изотермична, то интегрировать надо с учетом изменения температуры с высотой, а параметр Н – некоторая локальная характеристика слоев атмосферы, зависящая от их температуры и свойств среды.

Стандартная атмосфера.

Модель (таблица значений основных параметров), соответствующая стандартным давлению у основания атмосферы Р 0 и химическому составу, называется стандартной атмосферой. Точнее, это условная модель атмосферы, для которой заданы средние для широты 45° 32ў 33І значения температуры, давления, плотности, вязкости и др. характеристик воздуха на высотах от 2 км ниже уровня моря до внешней границы земной атмосферы. Параметры средней атмосферы на всех высотах рассчитаны по уравнению состояния идеального газа и барометрическому закону в предположении, что на уровне моря давление равно 1013,25 гПа (760 мм рт. ст.), а температура 288,15 К (15,0° С). По характеру вертикального распределения температуры средняя атмосфера состоит из нескольких слоев, в каждом из которых температура аппроксимирована линейной функцией высоты. В самом нижнем из слоев – тропосфере (h Ј 11 км) температура падает на 6,5° C каждым километром подъема. На больших высотах значение и знак вертикального градиента температуры меняются от слоя к слою. Выше 790 км температура составляет около 1000 К и практически не меняется с высотой.

Стандартная атмосфера является периодически уточняемым, узаконенным стандартом, выпускаемым в виде таблиц.

Таблица 1. Стандартная модель атмосферы земли
Таблица 1. СТАНДАРТНАЯ МОДЕЛЬ АТМОСФЕРЫ ЗЕМЛИ . В таблице приведены: h – высота от уровня моря, Р – давление, Т – температура, r – плотность, N – число молекул или атомов в единице объема, H – шкала высоты, l – длина свободного пробега. Давление и температура на высоте 80–250 км, полученные по ракетным данным, имеют более низкие значения. Значения для высот, больших чем 250 км, полученные путем экстраполяции, не очень точны.
h (км) P (мбар) T (°К) r (г/см 3) N (см –3) H (км) l (см)
0 1013 288 1,22· 10 –3 2,55·10 19 8,4 7,4·10 –6
1 899 281 1,11·10 –3 2,31·10 19 8,1·10 –6
2 795 275 1,01·10 –3 2,10·10 19 8,9·10 –6
3 701 268 9,1·10 –4 1,89·10 19 9,9·10 –6
4 616 262 8,2·10 –4 1,70·10 19 1,1·10 –5
5 540 255 7,4·10 –4 1,53·10 19 7,7 1,2·10 –5
6 472 249 6,6·10 –4 1,37·10 19 1,4·10 –5
8 356 236 5,2·10 -4 1,09·10 19 1,7·10 –5
10 264 223 4,1·10 –4 8,6·10 18 6,6 2,2·10 –5
15 121 214 1,93·10 –4 4,0·10 18 4,6·10 –5
20 56 214 8,9·10 –5 1,85·10 18 6,3 1,0·10 –4
30 12 225 1,9·10 –5 3,9·10 17 6,7 4,8·10 –4
40 2,9 268 3,9·10 –6 7,6·10 16 7,9 2,4·10 –3
50 0,97 276 1,15·10 –6 2,4·10 16 8,1 8,5·10 –3
60 0,28 260 3,9·10 –7 7,7·10 15 7,6 0,025
70 0,08 219 1,1·10 –7 2,5·10 15 6,5 0,09
80 0,014 205 2,7·10 –8 5,0·10 14 6,1 0,41
90 2,8·10 –3 210 5,0·10 –9 9·10 13 6,5 2,1
100 5,8·10 –4 230 8,8·10 –10 1,8·10 13 7,4 9
110 1,7·10 –4 260 2,1·10 –10 5,4·10 12 8,5 40
120 6·10 –5 300 5,6·10 –11 1,8·10 12 10,0 130
150 5·10 –6 450 3,2·10 –12 9·10 10 15 1,8·10 3
200 5·10 –7 700 1,6·10 –13 5·10 9 25 3·10 4
250 9·10 –8 800 3·10 –14 8·10 8 40 3·10 5
300 4·10 –8 900 8·10 –15 3·10 8 50
400 8·10 –9 1000 1·10 –15 5·10 7 60
500 2·10 –9 1000 2·10 –16 1·10 7 70
700 2·10 –10 1000 2·10 –17 1·10 6 80
1000 1·10 –11 1000 1·10 –18 1·10 5 80

Тропосфера.

Самый нижний и наиболее плотный слой атмосферы, в котором температура быстро уменьшается с высотой, называется тропосферой. Он содержит до 80% всей массы атмосферы и простирается в полярных и средних широтах до высот 8–10 км, а в тропиках до 16–18 км. Здесь развиваются практически все погодообразующие процессы, происходит тепловой- и влагообмен между Землей и ее атмосферой, образуются облака, возникают различные метеорологические явления, возникают туманы и осадки. Эти слои земной атмосферы находятся в конвективном равновесии и, благодаря активному перемешиванию имеют однородный химический состав, в основном, из молекулярных азота (78%) и кислорода (21%). В тропосфере сосредоточено подавляющее количество природных и техногенных аэрозольных и газовых загрязнителей воздуха. Динамика нижней части тропосферы толщиной до 2 км сильно зависит от свойств подстилающей поверхности Земли, определяющей горизонтальные и вертикальные перемещения воздуха (ветры), обусловленные передачей тепла от более нагретой суши, через ИК-излучение земной поверхности, которое поглощается в тропосфере, в основном, парами воды и углекислого газа (парниковый эффект). Распределение температуры с высотой устанавливается в результате турбулентного и конвективного перемешивания. В среднем оно соответствует падению температуры с высотой примерно на 6,5 К/км.

Скорость ветра в приземном пограничном слое сначала быстро растет с высотой, а выше она продолжает увеличиваться на 2–3 км/с на каждый километр. Иногда в тропосфере возникают узкие планетарные потоки (со скоростью более 30 км/с), западные в средних широтах, а вблизи экватора – восточные. Их называют струйными течениями.

Тропопауза.

У верхней границы тропосферы (тропопаузы) температура достигает минимального значения для нижней атмосферы. Это переходный слой между тропосферой и расположенной над нею стратосферой. Толщина тропопаузы от сотен метров до 1,5–2 км, а температура и высота соответственно в пределах от 190 до 220 К и от 8 до 18 км в зависимости от географической широты и сезона. В умеренных и высоких широтах зимой она ниже, чем летом на 1–2 км и на 8–15 К теплее. В тропиках сезонные изменения значительно меньше (высота 16–18 км, температура 180–200 К). Над струйными течениями возможны разрывы тропопаузы.

Вода в атмосфере Земли.

Важнейшей особенностью атмосферы Земли является наличие значительного количества водяных паров и воды в капельной форме, которую легче всего наблюдать в виде облаков и облачных структур. Степень покрытия неба облаками (в определенный момент или в среднем за некоторый промежуток времени), выраженная в 10-балльной шкале или в процентах, называют облачностью. Форма облаков определяется по международной классификации. В среднем, облака покрывают около половины земного шара. Облачность – важный фактор, характеризующий погоду и климат. Зимой и ночью облачность препятствует понижению температуры земной поверхности и приземного слоя воздуха, летом и днем – ослабляет нагревание земной поверхности солнечными лучами, смягчая климат внутри материков.

Облака.

Облака – скопления взвешенных в атмосфере водяных капель (водяные облака), ледяных кристаллов (ледяные облака) или – тех и других вместе (смешанные облака). При укрупнении капель и кристаллов они выпадают из облаков в виде осадков. Облака образуются, главным образом, в тропосфере. Они возникают в результате конденсации водяного пара, содержащегося в воздухе. Диаметр облачных капель порядка нескольких мкм. Содержание жидкой воды в облаках – от долей до нескольких граммов на м 3 . Облака различают по высоте: Согласно международной классификации существует 10 родов облаков: перистые, перисто-кучевые, перисто-слоистые, высококучевые, высокослоистые, слоисто-дождевые, слоистые, слоисто-кучевые, кучево-дождевые, кучевые.

В стратосфере наблюдаются также перламутровые облака, а в мезосфере – серебристые облака.

Перистые облака – прозрачные облака в виде тонких белых нитей или пелены с шелковистым блеском, не дающие тени. Перистые облака состоят из ледяных кристаллов, образуются в верхних слоях тропосферы при очень низких температурах. Некоторые виды перистых облаков служат предвестниками смены погоды.

Перисто-кучевые облака – гряды или слои тонких белых облаков верхней тропосферы. Перисто-кучевые облака построены из мелких элементов, имеющих вид хлопьев, ряби, маленьких шариков без теней и состоят преимущественно из ледяных кристаллов.

Перисто-слоистые облака – белесоватая полупрозрачная пелена в верхней тропосфере, обычно волокнистая, иногда размытая, состоящая из мелких игольчатых или столбчатых ледяных кристаллов.

Высококучевые облака – белые, серые или бело-серые облака нижних и средних слоев тропосферы. Высококучевые облака имеют вид слоев и гряд, как бы построенных из лежащих друг над другом пластинок, округлых масс, валов, хлопьев. Высококучевые облака образуются при интенсивной конвективной деятельности и обычно состоят из переохлажденных капелек воды.

Высокослоистые облака – сероватые или синеватые облака волокнистой или однородной структуры. Высокослоистые облака наблюдаются в средней тропосфере, простираются на несколько км в высоту и иногда на тысячи км в горизонтальном направлении. Обычно высокослоистые облака входят в состав фронтальных облачных систем, связанных с восходящими движениями воздушных масс.

Слоисто-дождевые облака – низкий (от 2 и выше км) аморфный слой облаков однообразно-серого цвета, дающий начало обложному дождю или снегу. Слоисто-дождевые облака – сильно развиты по вертикали (до нескольких км) и горизонтали (несколько тысяч км), состоят из переохлажденных капель воды в смеси со снежинками обычно связаны с атмосферными фронтами.

Слоистые облака – облака нижнего яруса в виде однородного слоя без определенных очертаний, серого цвета. Высота слоистых облаков над земной поверхностью составляет 0,5–2 км. Изредка из слоистых облаков выпадает морось.

Кучевые облака – плотные, днем ярко-белые облака со значительным вертикальным развитием (до 5 км и более). Верхние части кучевых облаков имеют вид куполов или башен с округлыми очертаниями. Обычно кучевые облака возникают как облака конвекции в холодных воздушных массах.

Слоисто-кучевые облака – низкие (ниже 2 км) облака в виде серых или белых не волокнистых слоев или гряд из круглых крупных глыб. Вертикальная мощность слоисто-кучевых облаков невелика. Изредка слоисто-кучевых облака дают небольшие осадки.

Кучево-дождевые облака – мощные и плотные облака с сильным вертикальным развитием (до высоты 14 км), дающие обильные ливневые осадки с грозовыми явлениями, градом, шквалами. Кучево-дождевые облака развиваются из мощных кучевых облаков, отличаясь от них верхней частью, состоящей из кристаллов льда.



Стратосфера.

Через тропопаузу, в среднем на высотах от 12 до 50 км, тропосфера переходит в стратосферу. В нижней части, на протяжении около 10 км, т.е. до высот около 20 км, она изотермична (температура около 220 К). Затем она растет с высотой, достигая максимума около 270 К на высоте 50–55 км. Здесь находится граница между стратосферой и выше лежащей мезосферой, называемая стратопаузой.

В стратосфере значительно меньше водяных паров. Все же иногда наблюдаются – тонкие просвечивающие перламутровые облака, изредка возникающие в стратосфере на высоте 20–30 км. Перламутровые облака видны на темном небе после захода и перед восходом Солнца. По форме перламутровые облака напоминают перистые и перисто-кучевые облака.

Средняя атмосфера (мезосфера).

На высоте около 50 км с пика широкого температурного максимума начинается мезосфера. Причиной увеличения температуры в области этого максимума является экзотермическая (т.е. сопровождающаяся выделением тепла) фотохимическая реакция разложения озона: О 3 + hv ® О 2 + О. Озон возникает в результате фотохимического разложения молекулярного кислорода О 2

О 2 + hv ® О + О и последующей реакции тройного столкновения атома и молекулы кислорода с какой-нибудь третьей молекулой М.

О + О 2 + М ® О 3 + М

Озон жадно поглощает ультрафиолетовое излучение в области от 2000 до 3000Å, и это излучение разогревает атмосферу. Озон, находящийся в верхней атмосфере, служит своеобразным щитом, охраняющим нас от действия ультрафиолетового излучения Солнца. Без этого щита развитие жизни на Земле в ее современных формах вряд ли было бы возможным.

В целом, на всем протяжении мезосферы температура атмосферы уменьшается до минимального ее значения около 180 К на верхней границе мезосферы (называемой мезопауза, высота около 80 км). В окрестности мезопаузы, на высотах 70–90 км, может возникать очень тонкий слой ледяных кристаллов и частиц вулканической и метеоритной пыли, наблюдаемый в виде красивого зрелища серебристых облаков вскоре после захода Солнца.

В мезосфере большей частью сгорают попадающие на Землю мелкие твердые метеоритные частицы, вызывающие явление метеоров.

Метеоры, метеориты и болиды.

Вспышки и другие явления в верхней атмосфере Земли вызванные вторжением в нее со скоростью от 11 км/с и выше твердых космических частиц или тел, называются метеороидами. Возникает наблюдаемый яркий метеорный след; наиболее мощные явления, часто сопровождаемые падением метеоритов, называются болидами ; появление метеоров связано с метеорными потоками.

Метеорный поток :

1) явление множественного падения метеоров в течение нескольких часов или дней из одного радианта.

2) рой метеороидов, движущихся по одной орбите вокруг Солнца.

Систематическое появление метеоров в определенной области неба и в определенные дни года, вызванное пересечением орбиты Земли с общей орбитой множества метеоритных тел, движущихся с примерно одинаковыми и одинаково направленными скоростями, из-за чего их пути на небе кажутся выходящими из одной общей точки (радианта). Называются по имени созвездия, где находится радиант.

Метеорные дожди производят глубокое впечатление своими световыми эффектами, но отдельные метеоры видны довольно редко. Гораздо многочисленнее невидимые метеоры, слишком малые, чтобы быть различимыми в момент их поглощения атмосферой. Некоторые из мельчайших метеоров, вероятно, совершенно не нагреваются, а лишь захватываются атмосферой. Эти мелкие частицы с размерами от нескольких миллиметров до десятитысячных долей миллиметра называются микрометеоритами. Количество ежесуточно поступающего в атмосферу метеорного вещества составляет от 100 до 10 000 тонн, причем большая часть этого вещества приходится на микрометеориты.

Поскольку метеорное вещество частично сгорает в атмосфере, ее газовый состав пополняется следами различных химических элементов. Например, каменные метеоры привносят в атмосферу литий. Сгорание металлических метеоров приводит к образованию мельчайших сферических железных, железоникелевых и других капелек, которые проходят сквозь атмосферу и осаждаются на земной поверхности. Их можно обнаружить в Гренландии и Антарктиде, где почти без изменений годами сохраняются ледниковые покровы. Океанологи находят их в донных океанических отложениях.

Большая часть метеорных частиц, поступивших в атмосферу, осаждается примерно в течение 30 суток. Некоторые ученые считают, что эта космическая пыль играет важную роль в формировании таких атмосферных явлений, как дождь, поскольку служит ядрами конденсации водяного пара. Поэтому предполагают, что выпадение осадков статистически связано с крупными метеорными дождями. Однако некоторые специалисты полагают, что, поскольку общее поступление метеорного вещества во много десятков раз превышает его поступление даже с крупнейшим метеорным дождем, изменением в общем количестве этого вещества, происходящим в результате одного такого дождя, можно пренебречь.

Однако несомненно, что наиболее крупные микрометеориты и видимые метеориты оставляют длинные следы ионизации в высоких слоях атмосферы, главным образом в ионосфере. Такие следы можно использовать для дальней радиосвязи, так как они отражают высокочастотные радиоволны.

Энергия поступающих в атмосферу метеоров расходуется главным образом, а может быть и полностью, на ее нагревание. Это одна из второстепенных составляющих теплового баланса атмосферы.

Метеорит – твердое тело естественного происхождения, упавшее на поверхность Земли из космоса. Обычно различают каменные, железо-каменные и железные метеориты. Последние в основном состоят из железа и никеля. Среди найденных метеоритов большинство имеют вес от нескольких граммов до нескольких килограммов. Крупнейший из найденных, – железный метеорит Гоба весит около 60 тонн и до сих пор лежит там же, где был обнаружен, в Южной Африке. Большинство метеоритов представляют собой осколки астероидов, но некоторые метеориты, возможно, попали на Землю с Луны и даже с Марса.

Болид – очень яркий метеор, иногда наблюдаемый даже днем, часто оставляющий после себя дымный след и сопровождаемый звуковыми явлениями; нередко заканчивается падением метеоритов.



Термосфера.

Выше температурного минимума мезопаузы начинается термосфера, в которой температура, сначала медленно, а потом быстро вновь начинает расти. Причиной является поглощение ультрафиолетового, излучения Солнца на высотах 150–300 км, обусловленное ионизацией атомарного кислорода: О + hv ® О + + е.

В термосфере температура непрерывно растет до высоты около 400 км, где она достигает днем в эпоху максимума солнечной активности 1800 К. В эпоху минимума эта предельная температура может быть меньше 1000 К. Выше 400 км атмосфера переходит в изотермичную экзосферу. Критический уровень (основание экзосферы) находится на высоте около 500 км.

Полярные сияния и множество орбит искусственных спутников, а так же серебристые облака – все эти явления происходят в мезосфере и термосфере.

Полярные сияния.

В высоких широтах во время возмущений магнитного поля наблюдаются полярные сияния. Они могут продолжаться несколько минут, но часто видимы в течение нескольких часов. Полярные сияния сильно различаются по форме, цвету и интенсивности, причем все эти характеристики иногда очень быстро меняются во времени. Спектр полярных сияний состоит из эмиссионных линий и полос. В спектре сияний усиливаются некоторые из эмиссий ночного неба, прежде всего зеленая и красная линии l 5577 Å и l 6300 Å кислорода. Бывает, что одна из этих линий во много раз интенсивнее другой, и это определяет видимый цвет сияния: зеленый или красный. Возмущения магнитного поля сопровождаются также нарушениями радиосвязи в полярных районах. Причиной нарушения являются изменения в ионосфере, которые означают, что во время магнитных бурь действует мощный источник ионизации. Установлено, что сильные магнитные бури происходят при наличии вблизи центра солнечного диска больших групп пятен. Наблюдения показали, что бури связаны не с самими пятнами, а с солнечными вспышками, которые появляются во время развития группы пятен.

Полярные сияния – это световая гамма изменяющейся интенсивности с быстрыми движениями, наблюдаемая в высокоширотных районах Земли. Визуальное полярное сияние содержит зеленую 5577Å) и красную (6300/6364Å) эмиссионные линии атомарного кислорода и молекулярные полосы N 2 , которые возбуждаются энергичными частицами солнечного и магнитосферного происхождения. Эти эмиссии обычно высвечиваются на высоте около 100 км и выше. Термин оптическое полярное сияние используется для обозначения визуальных полярных сияний и их эмиссионного спектра от инфракрасной до ультрафиолетовой области. Энергия излучения в инфракрасной части спектра существенно превосходит энергию видимой области. При появлении полярных сияний наблюдались эмиссии в диапазоне УНЧ (

Реальные формы полярных сияний трудно классифицировать; наиболее употребительны следующие термины:

1. Спокойные однородные дуги или полосы. Дуга обычно простирается на ~1000 км в направлении геомагнитной параллели (в направлении на Солнце в полярных районах) и имеет ширину от одного до нескольких десятков километров. Полоса – это обобщение понятия дуги, она обычно не имеет правильной дугообразной формы, а изгибается в виде буквы S или в виде спиралей. Дуги и полосы располагаются на высотах 100–150 км.

2. Лучи полярного сияния. Этот термин относится к авроральной структуре, вытянутой вдоль магнитных силовых линий, с протяженностью по вертикали от нескольких десятков до нескольких сотен километров. Протяженность лучей по горизонтали невелика, от нескольких десятков метров до нескольких километров. Обычно лучи наблюдаются в дугах или как отдельные структуры.

3. Пятна или поверхности. Это изолированные области свечения, не имеющие определенной формы. Отдельные пятна могут быть связаны между собой.

4. Вуаль. Необычная форма полярного сияния, представляющая собой однородного свечение, покрывающее большие участки небосвода.

По структуре полярные сияния подразделяются на однородные, половатые и лучистые. Используются различные термины; пульсирующая дуга, пульсирующая поверхность, диффузная поверхность, лучистая полоса, драпри и т.д. Существует классификация полярных сияний по их цвету. По этой классификации полярные сияния типа А . Верхней части или полностью имеют красный цвет (6300–6364 Å). Они обычно появляются на высотах 300–400 км при высокой геомагнитной активности.

Полярные сияния типа В окрашены в нижней части в красный цвет и связанны со свечением полос первой положительной системы N 2 и первой отрицательной системы O 2 . Такие формы сияния появляются во время наиболее активных фаз полярных сияний.

Зоны полярных сиянийэто зоны максимальной частоты появления сияний в ночное время, по данным наблюдателей в фиксированной точке на поверхности Земли. Зоны располагаются на 67° северной и южной широты, а их ширина составляет около 6°. Максимум появлений полярных сияний, соответствующий данному моменту геомагнитного местного времени, происходит в овалоподобных поясах (овал полярных сияний), которые располагаются асимметрично вокруг северного и южного геомагнитных полюсов. Овал полярных сияний фиксирован в координатах широта – время, а зона полярных сияний является геометрическим местом точек полуночной области овала в координатах широта – долгота. Овальный пояс располагается приблизительно на 23° от геомагнитного полюса в ночном секторе и на 15° в дневном секторе.

Овал полярных сияний и зоны полярных сияний. Расположение овала полярных сияний зависит от геомагнитной активности. Овал становится шире при высокой геомагнитной активности. Зоны полярных сияний или границы овала полярных сияний лучше представляются значением L 6,4, чем дипольными координатами. Геомагнитные силовые линии на границе дневного сектора овала полярных сияний совпадают с магнитопаузой. Наблюдается изменение положения овала полярных сияний в зависимости от угла между геомагнитной осью и направлением Земля – Солнце. Овал полярных сияний определяется также на основе данных о высыпаниях частиц (электронов и протонов) определенных энергий. Его положение может быть независимо определено по данным о каспах на дневной стороне и в хвосте магнитосферы.

Суточная вариация частоты появления полярных сияний в зоне полярных сияний имеет максимум в геомагнитную полночь и минимум в геомагнитный полдень. На приэкваториальной стороне овала частота появления полярных сияний резко уменьшается, но форма суточных вариаций сохраняется. На приполюсной стороне овала частота появления полярных сияний уменьшается постепенно и характеризуется сложными суточными изменениями.

Интенсивность полярных сияний.

Интенсивность полярных сияний определяется измерением кажущейся поверхности яркости. Поверхность яркости I полярного сияния в определенном направлении определяется суммарной эмиссией 4рI фотон/(см 2 с). Так как эта величина не является истинной поверхностной яркостью, а представляет собой эмиссию из столба, обычно при исследовании полярных сияний используют единицу фотон/(см 2 ·столб·с). Обычная единица для измерения суммарной эмиссии – Рэлей (Рл) равный 10 6 фотон/(см 2 ·столб.·с). Более практичные единицы интенсивности полярных сияний определяется по эмиссиям отдельной линии или полосы. Например, интенсивность полярных сияний определяется международным коэффициентами яркости (МКЯ) по данным об интенсивности зеленой линии (5577 Å); 1 кРл = I МКЯ, 10 кРл = II МКЯ, 100 кРл = III МКЯ, 1000 кРл = IV МКЯ (максимальная интенсивность полярного сияния). Эта классификация не может быть использована для сияний красного цвета. Одним из открытий эпохи (1957–1958) стало установление пространственно-временного распределения полярных сияний в виде овала, смещенного относительно магнитного полюса. От простых представлений о круговой форме распределения полярных сияний относительно магнитного полюса был совершен переход к современной физике магнитосферы. Честь открытия принадлежит О.Хорошевой, а интенсивную разработку идей овала полярных сияний осуществили Г.Старков, Я.Фельдштейн, С-И.Акасофу и ряд других исследователей. Овал полярных сияний представляет собой область наиболее интенсивного воздействия солнечного ветра на верхнюю атмосферу Земли. Интенсивность полярных сияний наибольшая именно в овале, а за его динамикой ведутся непрерывные наблюдения с помощью спутников.

Устойчивые авроральные красные дуги.

Устойчивая авроральная красная дуга, иначе называемая среднеширотной красной дугой или М-дугой , представляет собой субвизуальную (ниже предела чувствительности глаза) широкую дугу, вытянутую с востока на запад на тысячи километров и опоясывающую, возможно, всю Землю. Широтная протяженность дуги 600 км. Излучение устойчивой авроральной красной дуги практически монохроматично в красных линиях l 6300 Å и l 6364 Å. Недавно сообщалось также о слабых эмиссионных линиях l 5577 Å (OI) и l 4278 Å (N + 2). Устойчивые красные дуги классифицируются как полярные сияния, но они проявляются на гораздо больших высотах. Нижняя граница располагается на высоте 300 км, верхний предел около 700 км. Интенсивность спокойной авроральной красной дуги в эмиссии l 6300 Å составляет от 1 до 10 кРл (типичная величина 6 кРл). Порог чувствительности глаза на этой длине волны около 10 кРл, так что дуги редко наблюдаются визуально. Однако, наблюдения показали, что их яркость составляет >50 кРл в 10% ночей. Обычное время жизни дуг около одних суток, и они редко появляются в последующие дни. Радиоволны от спутников или радиоисточников, пересекающих устойчивые авроральные красные дуги, подвержены мерцаниям, что указывает на существование неоднородностей электронной плотности. Теоретическое объяснение красных дуг состоит в том, что нагретые электроны области F ионосферы вызывают увеличение атомов кислорода. Спутниковые наблюдения показывают увеличение электронной температуры вдоль силовых линий геомагнитного поля, которые пересекают устойчивые авроральные красные дуги. Интенсивность этих дуг положительно коррелирует с геомагнитной активностью (бурями), а частота появления дуг – с солнечной пятнообразовательной активностью.

Изменяющееся полярное сияние.

Некоторые формы полярных сияний испытывают квазипериодические и когерентные временные вариации интенсивности. Эти полярные сияния с примерно стационарной геометрией и быстрыми периодическими вариациями, происходящими в фазе, называются изменяющимися полярными сияниями. Они классифицируются как полярные сияния формы р по данным Международного атласа полярных сияний Более детальное подразделение изменяющихся полярных сияний:

р 1 (пульсирующее полярное сияние) представляет собой свечение с однородными фазовыми вариациями яркости по всей форме полярного сияния. По определению, в идеальном пульсирующем полярном сиянии пространственная и временная части пульсации могут быть разделены, т.е. яркость I (r,t ) = I s (r I T (t ). В типичном полярном сиянии р 1 происходят пульсации с частотой от 0,01 до 10 Гц низкой интенсивности (1–2 кРл). Большинство полярных сияний р 1 – это пятна или дуги, пульсирующие с периодом в несколько секунд.

р 2 (пламенное полярное сияние). Этот термин обычно используется для обозначения движений, подобных языкам пламени, заполняющим небосвод, а не для описания отдельной формы. Сияния имеют форму дуг и обычно движутся вверх с высоты 100 км. Эти полярные сияния относительно редки и чаще происходят за пределами полярных сияний.

р 3 (мерцающее полярное сияние). Это полярные сияния с быстрыми, иррегулярными или регулярными вариациями яркости, создающие впечатление мерцающего пламени на небосводе. Они появляются незадолго до распада полярного сияния. Обычно наблюдаемая частота вариаций р 3 равна 10 ± 3 Гц.

Термин струящееся полярное сияние, используемый для другого класса пульсирующих полярных сияний, относится к иррегулярным вариациям яркости, быстро движущимся горизонтально в дугах и полосах полярных сияний.

Изменяющееся полярное сияние – это одно из солнечно-земных явлений, сопровождающих пульсации геомагнитного поля и аврорального рентгеновского излучения, вызванные высыпанием частиц солнечного и магнитосферного происхождения.

Свечение полярной шапки характеризуется большой интенсивностью полосы первой отрицательной системы N + 2 (л 3914 Å). Обычно эти полосы N + 2 интенсивнее зеленой линии OI l 5577 Å в пять раз, абсолютная интенсивность свечения полярной шапки составляет от 0,1 до 10 кРл (обычно 1–3 кРл). При этих сияниях, появляющихся в периоды ППШ, однородное свечение охватывает всю полярную шапку вплоть до геомагнитной широты 60° на высотах о 30 до 80 км. Оно генерируется преимущественно солнечными протонами и d-частицами с энергиями 10–100 МэВ, создающими максимум ионизации на этих высотах. Имеется и другой тип свечения в зонах полярных сияний, называемый мантийным полярным сиянием. Для этого типа аврорального свечения суточный максимум интенсивности, приходящийся на утренние часы, составляет 1–10 кРл, а минимум интенсивности в пять раз слабее. Наблюдения мантийных полярных сияний немногочисленны, их интенсивность зависит от геомагнитной и солнечной активности.

Свечение атмосферы определяется как излучение, образованное и испускаемое атмосферой планеты. Это нетепловое излучение атмосферы, за исключением эмиссии полярных сияний, молниевых разрядов и излучения метеорных следов. Этот термин используется применительно к земной атмосфере (ночное свечение, сумеречное свечение и дневное свечение). Свечение атмосферы составляет только часть имеющегося в атмосфере света. Другими источниками являются свет звезд, зодиакальный свет и дневной рассеянный свет Солнца. Временами свечение атмосферы может составлять до 40% общего количества света. Свечение атмосферы возникает в атмосферных слоях изменяющейся высоты и толщины. Спектр свечения атмосферы охватывает длины волн от 1000 Å до 22,5 мкм. Основная линия излучения в свечении атмосферы – l 5577 Å, появляющаяся на высоте 90–100 км в слое толщиной 30–40 км. Возникновение свечения обусловлено механизмом Чемпена, основанным на рекомбинации атомов кислорода. Другие эмиссионные линии – это л 6300 Å, появляющаяся в случае диссоциативной рекомбинации О + 2 и эмиссии NI l 5198/5201 Å и NI l 5890/5896 Å.

Интенсивность свечения атмосферы измеряется в Рэлеях. Яркость (в Рэлеях) равна 4 рв, где в – угловая поверхность яркость излучающего слоя в единицах 10 6 фотон/(см 2 ·стер·с). Интенсивность свечения зависит от широты (по-разному для различных эмиссий), а также меняется в течение суток с максимумом вблизи полуночи. Отмечена положительная корреляция для свечения атмосферы в эмиссии l 5577 Å с числом солнечных пятен и потоком солнечного излучения на длине волны 10,7 см. Свечение атмосферы наблюдается во время спутниковых экспериментов. Из космического пространства оно выглядит как кольцо света вокруг Земли и имеет зеленоватый цвет.









Озоносфера.

На высотах 20–25 км достигается максимальная концентрация ничтожного количества озона О 3 (до 2Ч10 –7 от содержания кислорода!), который возникает под действием солнечного ультрафиолетового излучения на высотах примерно от 10 до 50 км, защищая планету от ионизующего солнечного излучения. Несмотря на исключительно малое количество молекул озона, они предохраняют все живое на Земле от губительного действия коротковолнового (ультрафиолетового и рентгеновского) излучения Солнца. Если осадить все молекулы к основанию атмосферы, то получится слой, толщиной не более 3–4 мм! На высотах более 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; многие молекулы диссоциируют на отдельные атомы, которые, ионизуясь под действием жесткого излучения Солнца, образуют ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу и экзосферу.

На высоте 20–25 км располагается озонный слой . Озон образуется за счет распада молекул кислорода при поглощении ультрафиолетового излучения Солнца с длинами волн короче 0,1–0,2 мкм. Свободный кислород соединяясь с молекулами О 2 и образует озон О 3 , который жадно поглощает весь ультрафиолет короче 0,29 мкм. Молекулы озона О 3 легко разрушаются под действием коротковолнового излучения. Поэтому, несмотря на свою разреженность, озонный слой эффективно поглощает ультрафиолетовое излучение Солнца, прошедшее сквозь более высокие и прозрачные атмосферные слои. Благодаря этому живые организмы на Земле защищены от губительного воздействия ультрафиолетового света Солнца.



Ионосфера.

Излучение Солнца ионизирует атомы и молекулы атмосферы. Степень ионизации становится существенной уже на высоте 60 километров и неуклонно растет с удалением от Земли. На различных высотах в атмосфере происходят последовательно процессы диссоциации различных молекул и последующая ионизация различных атомов и ионов. В основном это молекулы кислорода О 2 , азота N 2 и их атомы. В зависимости от интенсивности этих процессов различные слои атмосферы, лежащие выше 60-ти километров, называются ионосферными слоями, а их совокупность ионосферой. Нижний слой, ионизация которого несущественна, называют нейтросферой.

Максимальная концентрация заряженных частиц в ионосфере достигается на высотах 300–400 км.

История изучения ионосферы.

Гипотеза о существовании проводящего слоя в верхней атмосфере была высказана в 1878 английским ученым Стюартом для объяснения особенностей геомагнитного поля. Затем в 1902, независимо друг от друга, Кеннеди в США и Хевисайд в Англии указали, что для объяснения распространения радиоволн на большие расстояния необходимо предположить существование в высоких слоях атмосферы областей с большой проводимостью. В 1923 академик М.В.Шулейкин, рассматривая особенности распространения радиоволн различных частот, пришел к выводу о наличии в ионосфере не менее двух отражающих слоев. Затем в 1925 английские исследователи Эпплтон и Барнет, а также Брейт и Тьюв впервые экспериментально доказали существование областей, отражающих радиоволны, и положили начало их систематическому изучению. С того времени ведется систематическое изучение свойств этих слоев, в целом называемых ионосферой, играющих существенную роль в ряде геофизических явлений, определяющих отражение и поглощение радиоволн, что очень важно для практических целей, в частности для обеспечения надежной радиосвязи.

В 1930-е были начаты систематические наблюдения состояния ионосферы. В нашей стране по инициативе М.А.Бонч-Бруевича были созданы установки для импульсного ее зондирования. Были исследованы многие общие свойства ионосферы, высоты и электронная концентрацию основных ее слоев.

На высотах 60–70 км наблюдается слой D, на высотах 100–120 км слой Е , на высотах, на высотах 180–300 км двойной слой F 1 и F 2 . Основные параметры этих слоев приведены в Таблице 4.

Таблица 4.
Таблица 4.
Область ионосферы Высота максимума, км T i , K День Ночь n e , см –3 a΄, ρм 3 с 1
мин n e , см –3 макс n e , см –3
D 70 20 100 200 10 10 –6
E 110 270 1,5·10 5 3·10 5 3000 10 –7
F 1 180 800–1500 3·10 5 5·10 5 3·10 –8
F 2 (зима) 220–280 1000–2000 6·10 5 25·10 5 ~10 5 2·10 –10
F 2 (лето) 250–320 1000–2000 2·10 5 8·10 5 ~3·10 5 10 –10
n e – электронная концентрация, е – заряд электрона, T i – температура ионов, a΄ – κоэффициент рекомбинации (который определяет величину n e и ее изменение во времени)

Приведены средние значения, поскольку они меняются для различных широт, в зависимости от времени суток и сезонов. Подобные данные необходимы для обеспечения дальней радиосвязи. Они используются при выборе рабочих частот для различных коротковолновых линий радиосвязи. Знание их изменения в зависимости от состояния ионосферы в разное время суток и в разные сезоны исключительно важно для обеспечения надежности радиосвязи. Ионосферой называется совокупность ионизированных слоев земной атмосферы, начинающаяся с высот порядка 60 км и простирающаяся до высот в десятки тысяч км. Основной источник ионизации земной атмосферы – ультрафиолетовое и рентгеновское излучение Солнца, возникающее главным образом в солнечной хромосфере и короне. Кроме того, на степень ионизации верхней атмосферы влияют солнечные корпускулярные потоки, возникающие во время вспышек на Солнце, а также космические лучи и метеорные частицы.

Ионосферные слои

– это области в атмосфере, в которых достигаются максимальные значения концентрации свободных электронов (т.е. их числа в единице объема). Электрически заряженные свободные электроны и (в меньшей степени менее подвижные ионы), возникающие в результате ионизации атомов атмосферных газов, взаимодействуя с радиоволнами (т.е. электромагнитными колебаниями), могут изменять их направление, отражая или преломляя их, и поглощать их энергию. В результате этого при приеме далеких радиостанций могут возникать различные эффекты, например, замирания радиосвязи, усиления слышимости удаленных станций, блекауты и т.п. явления.

Методы исследования.

Классические методы изучения ионосферы с Земли сводятся к импульсному зондированию - посылки радиоимпульсов и наблюдения их отражений от различных слоев ионосферы с измерением времени запаздывания и изучением интенсивности и формы отраженных сигналов. Измеряя высоты отражения радиоимпульсов на различных частотах, определяя критические частоты различных областей (критической называется несущая частота радиоимпульса, для которой данная область ионосферы становится прозрачной), можно определять значение электронной концентрации в слоях и действующие высоты для заданных частот, выбирать оптимальные частоты для заданных радиотрасс. С развитием ракетной техники и с наступлением космической эры искусственных спутников Земли (ИСЗ) и других космических аппаратов, появилась возможность непосредственного измерения параметров околоземной космической плазмы, нижней частью которой и является ионосфера.

Измерения электронной концентрации, проводимые с борта специально запускаемых ракет и по трассам полетов ИСЗ, подтвердили и уточнили ранее полученные наземными методами данные о структуре ионосферы, распределении концентрации электронов с высотой над различными районами Земли и позволили получить значения электронной концентрации выше главного максимума – слоя F . Ранее это было невозможно сделать методами зондирования по наблюдениям отраженных коротковолновых радиоимпульсов. Обнаружено, что в некоторых районах земного шара существуют достаточно устойчивые области с пониженной электронной концентрацией, регулярные «ионосферные ветры», в ионосфере возникают своеобразные волновые процессы, переносящие местные возмущения ионосферы на тысячи километров от места их возбуждения, и многое другое. Создание особо высокочувствительных приемных устройств позволило осуществить на станциях импульсного зондирования ионосферы прием импульсных сигналов, частично отраженных от самых нижних областей ионосферы (станции частичных отражений). Использование мощных импульсных установок в метровом и дециметровом диапазонах волн с применением антенн, позволяющих осуществлять высокую концентрацию излучаемой энергии, дало возможность наблюдать сигналы, рассеянные ионосферой на различных высотах. Изучение особенностей спектров этих сигналов, не когерентно рассеянных электронами и ионами ионосферной плазмы (для этого использовались станции некогерентного рассеяния радиоволн) позволило определить концентрацию электронов и ионов, их эквивалентную температуру на различных высотах вплоть до высот в несколько тысяч километров. Оказалось, что для используемых частот ионосфера достаточно прозрачна.

Концентрация электрических зарядов (электронная концентрация равна ионной) в земной ионосфере на высоте 300 км составляет днем около 10 6 см –3 . Плазма такой плотности отражает радиоволны длиной более 20 м, а более короткие пропускает.

Типичное вертикальное распределение электронной концентрации в ионосфере для дневных и ночных условий.

Распространение радиоволн в ионосфере.

Стабильный прием дальних радиовещательных станций зависит от используемых частот, а также от времени суток, сезона и, кроме того, от солнечной активности. Солнечная активность существенно влияет на состояние ионосферы. Радиоволны, излучаемые наземной станцией, распространяются прямолинейно, как и все виды электромагнитных колебаний. Однако следует учесть, что как поверхность Земли, так и ионизированные слои ее атмосферы, служат как бы обкладками огромного конденсатора, воздействующими на них подобно действию зеркал на свет. Отражаясь от них, радиоволны могут преодолевать многие тысячи километров, огибая земной шар громадными скачками в сотни и тысячи км, отражаясь попеременно от слоя ионизированного газа и от поверхности Земли или воды.

В 20-х годах прошлого столетия считалось, что радиоволны короче 200 м вообще не пригодны для дальней связи из-за сильного поглощения. Первые эксперименты по дальнему приёму коротких волн через Атлантику между Европой и Америкой провели английский физик Оливер Хэвисайд и американский инженер-электрик Артур Кеннели. Независимо друг от друга они предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Его назвали слоем Хэвисайда – Кеннели, а затем – ионосферой.

Согласно современным представлениям ионосфера состоит из отрицательно заряженных свободных электронов и положительно заряженных ионов, в основном молекулярного кислорода O + и окиси азота NO + . Ионы и электроны образуются в результате диссоциации молекул и ионизации нейтральных атомов газа солнечным рентгеновским и ультрафиолетовым излучением. Для того, чтобы ионизовать атом необходимо сообщить ему энергию ионизации, основным источником которой для ионосферы является ультрафиолетовое, рентгеновское и корпускулярное излучение Солнца.

Пока газовая оболочка Земли освещена Солнцем, в ней непрерывно образуются всё новые и новые электроны, но одновременно часть электронов, сталкиваясь с ионами, рекомбинирует, вновь образуя нейтральные частицы. После захода Солнца образование новых электронов почти прекращается, и число свободных электронов начинает убывать. Чем больше свободных электронов в ионосфере, тем лучше от неё отражаются волны высокой частоты. С уменьшением электронной концентрации прохождение радиоволн возможно только на низкочастотных диапазонах. Вот почему ночью, как правило, возможен приём дальних станций лишь в диапазонах 75, 49, 41 и 31 м. Электроны распределены в ионосфере неравномерно. На высоте от 50 до 400 км имеется несколько слоёв или областей повышенной концентрации электронов. Эти области плавно переходят одна в другую и по-разному влияют на распространение радиоволн КВ диапазона. Верхний слой ионосферы обозначают буквой F . Здесь наиболее высокая степень ионизации (доля заряженных частиц порядка 10 –4). Она расположена на высоте более 150 км над поверхностью Земли и играет основную отражательную роль при дальнем распространении радиоволн высокочастотных КВ диапазонов. В летние месяцы область F распадается на два слоя – F 1 и F 2 . Слой F1 может занимать высоты от 200 до 250 км, а слой F 2 как бы «плавает» в интервале высот 300–400 км. Обычно слой F 2 ионизирован значительно сильнее слоя F 1 . Ночью слой F 1 исчезает, а слой F 2 остается, медленно теряя до 60% степени своей ионизации. Ниже слоя F на высотах от 90 до 150 км расположен слой E , ионизация которого происходит под воздействием мягкого рентгеновского излучения Солнца. Степень ионизации слоя E ниже, чем слоя F , днем прием станций низкочастотных КВ диапазонов 31 и 25 м происходит при отражении сигналов от слоя E . Обычно это станции, расположенные на расстоянии 1000–1500 км. Ночью в слое E ионизация резко уменьшается, но и в это время она продолжает играть заметную роль в приёме сигналов станций диапазонов 41, 49 и 75 м.

Большой интерес для приема сигналов высокочастотных КВ диапазонов 16, 13 и 11 м представляют возникающие в области E прослойки (облака) сильно повышенной ионизации. Площадь этих облаков может изменяться от единиц до сотен квадратных километров. Этот слой повышенной ионизации получил название – спорадический слой E и обозначается Es . Облака Es могут перемещаться в ионосфере под воздействием ветра и достигать скорости до 250 км/час. Летом в средних широтах в дневное время происхождение радиоволн за счет облаков Es за месяц бывает 15–20 дней. В районе экватора он присутствует почти всегда, а в высоких широтах обычно появляется ночью. Иногда, в годы низкой солнечной активности, когда нет прохождения на высокочастотный КВ диапазонах, на диапазонах 16, 13 и 11 м с хорошей громкостью вдруг появляются дальние станции, сигналы которых многократно отразились от Es.

Самая нижняя область ионосферы – область D расположена на высотах между 50 и 90 км. Здесь сравнительно мало свободных электронов. От области D хорошо отражаются длинные и средние волны, а сигналы станций низкочастотный КВ диапазонов сильно поглощаются. После захода Солнца ионизация очень быстро исчезает и появляется возможность принимать дальние станции в диапазонах 41, 49 и 75 м, сигналы которых отражаются от слоев F 2 и E . Отдельные слои ионосферы играют важную роль в распространении сигналов КВ радиостанций. Воздействие на радиоволны происходит главным образом из-за наличия в ионосфере свободных электронов, хотя механизм распространения радиоволн связан с наличием крупных ионов. Последние также представляют интерес при изучении химических свойств атмосферы, поскольку они активнее нейтральных атомов и молекул. Химические реакции, протекающие в ионосфере, играют важную роль в ее энергетическом и электрическом балансе.

Нормальная ионосфера. Наблюдения, проведенные при помощи геофизических ракет и спутников, дали массу новой информации, свидетельствующей, что ионизация атмосферы происходит под воздействием солнечной радиации широкого спектра. Основная ее часть (более 90%) сосредоточена в видимой части спектра. Ультрафиолетовое излучение с меньшей длиной волны и большей энергией, чем у фиолетовых световых лучей, испускается водородом внутренней части атмосферы Солнца (хромосферы), а рентгеновское излучение, обладающее еще более высокой энергией, – газами внешней оболочки Солнца (короны).

Нормальное (среднее) состояние ионосферы обусловлено постоянным мощным излучением. Регулярные изменения происходят в нормальной ионосфере под воздействием суточного вращения Земли и сезонных различий угла падения солнечных лучей в полдень, но происходят также непредсказуемые и резкие изменения состояния ионосферы.

Возмущения в ионосфере.

Как известно, на Солнце возникают мощные циклически повторяющиеся проявления активности, которые достигают максимума каждые 11 лет. Наблюдения по программе Международного геофизического года (МГГ) совпали с периодом наиболее высокой солнечной активности за весь срок систематических метеорологических наблюдений, т.е. с начала 18 века. В периоды высокой активности яркость некоторых областей на Солнце возрастает в несколько раз, и резко увеличивается мощность ультрафиолетового и рентгеновского излучения. Такие явления называются вспышками на Солнце. Они продолжаются от нескольких минут до одного-двух часов. Во время вспышки извергается солнечная плазма (в основном протоны и электроны), и элементарные частицы устремляются в космическое пространство. Электромагнитное и корпускулярное излучение Солнца в моменты таких вспышек оказывает сильное воздействие на атмосферу Земли.

Первоначальная реакция отмечается через 8 минут после вспышки, когда интенсивное ультрафиолетовое и рентгеновское излучение достигает Земли. В результате резко повышается ионизация; рентгеновские лучи проникают в атмосферу до нижней границы ионосферы; количество электронов в этих слоях возрастает настолько, что радиосигналы почти полностью поглощаются («гаснут»). Дополнительное поглощение радиации вызывает нагрев газа, что способствует развитию ветров. Ионизированный газ является электрическим проводником, и когда он движется в магнитном поле Земли, проявляется эффект динамо-машины и возникает электрический ток. Такие токи могут в свою очередь вызывать заметные возмущения магнитного поля и проявляться в виде магнитных бурь.

Структура и динамика верхней атмосферы существенно определяется неравновесными в термодинамическом смысле процессами, связанными с ионизацией и диссоциацией солнечным излучением, химическими процессами, возбуждением молекул и атомов, их дезактивацией, соударением и другими элементарными процессами. При этом степень неравновесности возрастает с высотой по мере уменьшения плотности. Вплоть до высот 500–1000 км, а часто и выше, степень неравновесности для многих характеристик верхней атмосферы достаточно мала, что позволяет использовать для ее описания классическую и гидромагнитную гидродинамику с учетом химических реакций.

Экзосфера – внешний слой атмосферы Земли, начинающийся с высот в несколько сотен км, из которого легкие, быстро движущиеся атомы водорода могут ускользать в космическое пространство.

Эдвард Кононович

Литература:

Пудовкин М.И. Основы физики Солнца . СПб, 2001
Eris Chaisson, Steve McMillan Astronomy today . Prentice-Hall, Inc. Upper Saddle River, 2002
Материалы в Интернете: http://ciencia.nasa.gov/