Меню Рубрики

Скорость любой химической реакции зависит от давления. Скорость химической реакции равна изменению концентрации реагирующего вещества в единицу времени

При записи кинетического уравнения реакции для газообразных систем вместо концентрации (С) пишут давление (Р) реагентов, так как изменение давления в системе аналогично изменению концентрации. Увеличение давления в системе вызывает уменьшение объема системы во столько же раз, при этом концентрация реагентов в единице объема увеличивается так же. При уменьшении давления происходит увеличение объема системы, при этом концентрации в единице объема уменьшится соответственно.

Примеры и решения задач.

Пример 1.

Скорость какой реакции больше, если за единицу времени в единице объема образовалось в результате первой реакции 9г водяного пара, в результате второй реакции – 3,65г хлористого водорода?

Скорость реакции измеряется количеством молей вещества, которое образуется в единице объема за единицу времени. Молярная масса воды молярная масса хлористого водорода тогда скорость первой реакции,

Моль/л×с,

а скорость второй реакции

будет моль/л.

Скорость образования водяных паров больше, так как число молей образования водяного пара больше, чем число молей образования хлористого водорода.

Пример 2.

Реакция между веществами А и В выражается уравнением: А+2В®С. Начальная концентрация вещества А равна 0,3 моль/л, а вещества В–0,5 моль/л. Константа скорости равна 0,4. Определить скорость реакции по истечении некоторого времени, когда концентрация вещества А уменьшается на 0,1 моль/л.

Концентрация вещества А уменьшилась на 0,1 моль/л. Следовательно, исходя из уравнения реакции, концентрация вещества В уменьшилась на 0,2 моль/л, так как перед веществом В стоит коэффициент 2. Тогда концентрация вещества А через некоторое время станет равной 0,3-0,1=0,2 моль/л, а концентрация В – 0,5-0,2=0,3 моль/л.

Определяем скорость реакции:

Моль/л×с

Пример 3.

Как изменится скорость реакции: если увеличить концентрацию NO в 3 раза? Согласно закону действующих масс запишем выражение для скорости реакции:

.

При увеличении концентрации NO в 3 раза скорость реакции будет:



Скорость реакции увеличится в 9 раз.

Пример 4.

Определите, как изменится скорость реакции, если увеличить давление в системе в 2 раза.

Увеличение давления в системе в 2 раза вызовет уменьшение объема системы в 2 раза, при этом концентрации реагирующих веществ возрастут в 2 раза.

Согласно закону действующих масс запишем начальную скорость реакции и при увеличении давления в 2 раза:

, .

Скорость реакции увеличится в 8 раз.

Пример 5.

Рассчитайте исходные концентрации веществ А и В в системе А+3В=2С, если равновесные концентрации веществ А равна 0,1 моль/л, веществ В равна 0,2 моль/л, вещества С–0,7 моль/л.

Находим концентрацию вещества А, израсходованную на реакцию, составляя пропорцию по уравнению реакции:

2 моль/л С получено из 1 моль/л А,

0,7 моль/л С ®х моль /л × А.

моль/л А.

Следовательно, исходная концентрация вещества А равна:

0,1 + 0,35 = 0,45 моль/л.

Находим концентрацию вещества В, израсходованную на реакцию.

Составляем пропорцию по уравнению реакции:

2 моль/л С получено из 3 моль/л В

0,7 моль/л С ® х моль/л В

х= моль/л А.

Тогда исходная концентрация вещества В равна:

моль/л.

Пример 6.

При температуре 40 0 С образовалось 0,5 моль/л вещества А. Сколько моль/л А образуется, если повысить температуру до 80 0 С? Температурный коэффициент реакции равен 2.

По правилу Вант-Гоффа запишем выражение скорости реакции при 80 0 С:

.

Подставив в уравнение данные задачи, получим:

При 80 0 С образуется 8 моль/л вещества А.

Пример 7.

Рассчитайте изменение константы скорости реакции, имеющей энергию активации 191 кДж/моль, при увеличении температуры от 330 до 400 К.

Запишем уравнение Аррениуса для условия задачи:

где R – универсальная газовая постоянная, равная 8,32 Дж/к(К×моль).

откуда изменение константы скорости будет:

Контрольные задания

61. Скорость химической реакции

2NO(г) + O2(г) = 2NO2(г)

при концентрациях реагирующих веществ =0,3 моль/л и =0,15 моль/л составила 1,2·10-3 моль/(л·с). Найдите значение константы скорости реакции.

62. На сколько градусов следует повысить температуру системы, чтобы скорость протекания в ней реакции возросла в 30 раз (=2,5)?

63. Во сколько раз следует увеличить концентрацию оксида углерода в системе

2СО = СО2+ С,

чтобы скорость реакции увеличилась в 4 раза?

64. Во сколько раз следует увеличить давление, чтобы скорость реакции образования NО2по реакции

возросла в 1000 раз?

65. Реакция идет согласно уравнению

2NO(г) + Cl2(г) = 2NOCl(г).

Концентрации исходных веществ до начала реакции составляли: =0,4 моль/л; =0,3 моль/л. Во сколько раз изменится скорость реакции по сравнению с первоначальной в тот момент, когда успеет прореагировать половина оксида азота?

66. Во сколько раз увеличится константа скорости химической реакции при повышении температуры на 40, если =3,2?

67. Напишите выражение для скорости химической реакции, протекающей в гомогенной системе по уравнению

и определите, во сколько раз увеличится скорость этой реакции, если:

а) концентрация А уменьшится в 2 раза;

б) концентрация А увеличится в 2 раза;

в) концентрация В увеличится в 2 раза;

г) концентрация обоих веществ увеличится в 2 раза.

68. Во сколько раз следует увеличить концентрацию водорода в системе

N2 + 3H2= 2NН3,

чтобы скорость реакции возросла в 100 раз?

69. Вычислите температурный коэффициент скорости реакции, если константа скорости ее при 100 С составляет 0,0006, а при 150 С 0,072.

70. Реакция между оксидом азота (II) и хлором протекает по уравнению

2NO + Cl2= 2NOCl.

Как изменится скорость реакции при увеличении:

а) концентрации оксида азота в 2 раза;

б) концентрации хлора в 2 раза;

в) концентрации обоих веществ в 2 раза?

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Примеры решения задач

Химическим равновесием называется такое состояние системы, при котором скорости прямой и обратной химических реакций равны, и концентрации реагирующих веществ не изменяются с течением времени.

Количественной характеристикой химического равновесия является константа равновесия. Константа равновесия при постоянной температуре равна отношению произведения равновесных концентраций продуктов реакции к произведению равновесных концентраций исходных веществ, взятых в степенях их стехиометрических коэффициентов, и является величиной постоянной.

В общем случае для гомогенной реакции mA+ nB« pC+qD

константа равновесия равна:

Это уравнение выражаем законом действующих масс для обратимой реакции.

При изменении внешних условий происходит смещение химического равновесия, выражающееся в изменении равновесных концентраций исходных веществ и продуктов реакции. Направление смещения равновесия определяется принципом Ле-Шателье: если на систему, находящуюся в равновесии, оказывается внешнее воздействие, то равновесие смещается в том направлении, которое ослабляет внешнее воздействие.

Химическое равновесие можно сместить влиянием изменения концентрации реагирующих веществ, температуры, давления.

При увеличении концентрации исходных веществ равновесие сместится в соответствии с принципом Ле-Шателье в сторону продуктов реакции, а при увеличении концентраций продуктов – в сторону исходных веществ.

При изменении температуры (ее увеличении) равновесие смещается в сторону эндотермической реакции (D H > 0), идущей с поглощением тепла, т.е. увеличивается скорость прямой реакции, и равновесие смещается в сторону продуктов реакции. В случае экзотермической реакции (D H > 0), при увеличении температуры увеличится скорость обратной реакции, которая будет обеспечивать поглощение тепла, и равновесие сместится в сторону исходных веществ.

Если в реакции участвуют вещества в газообразном состоянии, то химическое равновесие можно сместить изменением давления. Увеличение давления равносильно увеличено концентрации реагирующих веществ. При увеличении давления равновесие смещается в сторону реакции с меньшим числом молей газообразных веществ, а при уменьшении давления – в сторону реакции с большим числом молей газообразных веществ.

Пример 1.

Рассчитайте исходные концентрации вещества А и В в гомогенной системе А+3В«2С, если равновесные концентрации А=0,1 моль/л, В=0,2 моль/л, С= 0,7 моль/л.

Известно, что исходная концентрация вещества равна сумме равновесной и концентрации, ушедшей на реакцию, т.е. прореагировавшей:

Чтобы найти надо знать, сколько вещества А прореагировало.

Рассчитываем , составляя пропорцию по уравнению реакций:

2моль/л С получено из 1 моль/л А

0,7 моль/л С ––––––––х моль/л А,

х= (0,7×1)/2= 0,35 моль/л

Рассчитываем исходную концентрацию вещества В:

Для нахождения составим пропорцию:

2 моль/л С получено из 3моль/л В

0,7 моль/л С –––––––––––––х моль/л В

х = (0,7×3)/2 = 1,05 моль/л

Тогда исходная концентрация В равна:

Пример 2 .

Рассчитайте равновесные концентрации веществ в системе А+В «С+Д при условии, что исходные концентрации веществ: А=1 моль/л, В= 5 моль/л. Константа равновесия равна 1.

Предположим, что к моменту равновесия вещества А прореагировало х молей. Исходя из уравнения реакции, равновесные концентрации будут:

;

так как по уравнению реакции вещества В ушло на реакции столько же, сколько прореагировало вещества А.

Подставляем значения равновесных концентраций в константу равновесия и находим х.

Тогда:

Пример 3.

В системе установилось равновесие: 2АВ+В 2 «2АВ; D H > 0.

В каком направлении сместится равновесие при уменьшении температуры?

Данная прямая реакция является эндотермической, т.е. идет с поглощением тепла, поэтому при уменьшении температуры в системе, равновесие в соответствии с принципом Ле-Шателье сместится влево, в сторону обратной реакции, которая является экзотермической.

Пример 4 .

Равновесие системы А + В « АВ установилось при следующих концентрациях веществ: С(А)=С(В)=C(АВ)=0,01моль/л. Рассчитайте константу равновесия и исходные концентрации веществ.72. Исходные концентрации оксида азота (II) и хлора в системе

2NO + Cl2 2NOCl

составляют соответственно 0,5 моль/л и 0,2 моль/л. Вычислите константу равновесия, если к моменту наступления равновесия прореагировало 20 оксида азота (II).

73. При некоторой температуре равновесные концентрации реагентов обратимой химической реакции

2А(г)+В(г) 2С(г)

составили [А]=0,04 моль/л, [В]=0,06 моль/л, [C]=0,02 моль/л. Вычислите константу равновесия и исходные концентрации веществ А и В.

74. При некоторой температуре равновесные концентрации в системе

составляли соответственно: = 0,04 моль/л, = 0,06 моль/л,

0,02 моль/л. Вычислите константу равновесия и исходные кон-

центрации оксида серы (IV) и кислорода.

75. При состоянии равновесия системы

концентрации участвующих веществ были: = 0,3 моль/л; = =0,9 моль/л; = 0,4 моль/л. Рассчитайте, как изменятся скорости прямой и обратной реакции, если давление увеличится в 5 раз. В каком направлении сместится равновесие?

76. Вычислите константу равновесия обратимой реакции

2SO2(г) + O2(г) 2SO3(г),

если равновесная концентрация =0,04 моль/л, а исходные концен-трации веществ =1 моль/л, =0,8 моль/л.

77. Равновесие системы

CO + Cl2 COCl2,

установилось при следующих концентрациях реагирующих веществ: [СО] = =[Сl2] = = 0,001 моль/л. Определите константу равновесия и исходные концентрации окиси углерода и хлора.

78. Исходные концентрации оксида углерода (II) и паров воды равны и составляют 0,03 моль/л. Вычислите равновесные концентрации СО, Н2О и Н2в системе

CO + H2O CO2+ H2,

если равновесная концентрация СО2оказалась равной 0,01 моль/л. Вычислите константу равновесия.

79. Определите равновесную концентрацию водорода в системе

если исходная концентрация HJ составляла 0,05 моль/л, а константа равновесия К=0,02.

80. Константа равновесия системы

СО + Н2О СО2+ Н2

при некоторой температуре равна 1. Вычислите процентный состав смеси в состоянии равновесия, если начальные концентрации СО и Н2О составляют по 1 моль/л.

Скорость химической реакции при данной температуре пропорциональна произведению концентраций реагирующих веществ в степени, равной стехиометрическому коэффициенту, стоящему перед формулой данного вещества в уравнении реакции.

Закон действия масс справедлив только для наиболее простых по своему механизму реакций взаимодействия, протекающих в газах или в разбавленных растворах.

1. aA(Ж) + bB (Ж) ↔ cC (Ж) + dD (Ж) ; (T=const)

2. 3H 2(Г) + N 2(Г) ↔ 2NH 3(Г) ;

Для гетерогенных реакций:

1. aA (т) + bB (Г) = cC (Г) + dD (Г) ; 2. С (т) +О 2(Г) =СО 2(Г) ;

В законе действия масс не учитываются концентрации веществ, находящихся в твердой фазе. Чем больше площадь поверхности твердой фазы, тем выше скорость химической реакции.

k - константа скорости химической реакции определяется природой реагирующих веществ и зависит от температуры, от присутствия в системе катализатора, но не зависит от концентрации реагирующих веществ. Константа скорости представляет собой скорость химической реакции (), если концентрации реагирующих веществ .

3. Зависимость скорости химической реакции от давления . Для газообразных систем увеличение давления или уменьшение объема, равноценно увеличению концентрации и наоборот.

Задача: Как изменится скорость химической реакции 2SO 2(г) + O 2(г) 2SO 3(г) , если давление в системе увеличить в 4 раза?

В соответствие с законом действия масс для прямой реакции, записываем выражение:

Пусть = a моль/л, = b моль/л, тогда по закону действия масс

Уменьшение объема в 4 раза соответствует увеличению концентрации в системе в 4 раза, тогда:

Влияние температуры на скорость химической реакции приближенно определяется правилом Вант-Гоффа . При повышении температуры на 10 0 С скорость химической реакции возрастает в 2-4раза.

Математическая запись правила Вант-Гоффа: γ - температурный коэффициент скорости реакции или коэффициент Вант-Гоффа для большинства реакций лежит в пределах 2-4.

Задача. Во сколько раз изменится скорость химической реакции, протекающей в газовой фазе, если температура изменилась от 80 0 С до 120 0 С (γ = 3)?

В соответствии с правилом Вант-Гоффа записываем:

Увеличение скорости химической реакции при повышении температуры объясняется не только увеличением кинетической энергии взаимодействующих молекул. Например, число столкновений молекул растет пропорционально корню квадратному из абсолютной температуры. При нагревании веществ от нуля до ста градусов по Цельсию, скорость движения молекул возрастает в 1,2 раза, а скорость химической реакции возрастает примерно в 59 тысяч раз. Такое резкое увеличение скорости реакции с ростом температуры объясняется долей активных молекул, столкновения которых приводит к химическому взаимодействию. Согласно теории активных столкновений в реакцию вступают только активные молекулы, энергия которых превышает среднюю энергию молекул данного вещества, т.е. молекулы, обладающие энергией активации.


Энергия активации (E А) - это тот избыток энергии по сравнению со средним запасом, которым должны обладать молекулы для осуществления химической реакции. Если Е А < 40 кДж/моль - реакции протекают быстро, если Е А > 120 кДж/моль - реакции не идут, если Е А = 40-120 кДж/моль - реакции протекают в обычных условиях. Повышение температуры снижает энергию активации, делает вещества более реакционно-способными, скорость взаимодействия при этом увеличивается.

Более точную зависимость скорости химической реакции от температуры установил C. Аррениус : константа скорости реакции пропорциональна основанию натурального логарифма, возведенного в степень (-Е А /RT). ,

А - предэкспоненциальный множитель, определяет число активных соударений;

е - экспонента (основание натурального логарифма).

Логарифмируя выражение , получим уравнение:

. Уравнение Аррениуса показывает, что скорость реакции тем выше, чем меньше энергия активации. Для снижения энергии активации используют катализаторы.

Системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные .

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn / dt · V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ = ± dC / dt ,

Единица измерения скорости реакции моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой , которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением :

υ = k·[A] a ·[B] b или

υ = k·C a A ·C b B

Здесь [ A ] и [ B ] (C A и C B )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k .

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения .
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k .

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей .

Каждая реакция имеет свой порядок . Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок . Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k ·[ A ] a ·[ B ] b

a – порядок по реагенту А

b порядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

  1. Зависимость скорости реакции от концентрации реагирующих веществ

    определяется законом действующих масс: υ = k [ A ] a ·[ B ] b

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами. Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если по какому-либо реагенту n = 2 , то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

Различают среднюю скорость

где Δс=с 2 -с 1 – изменение концентрации вещества за промежуток времени Δτ=τ 2 -τ 1 . Знак (+) означает, что вещество образуется, а знак (–) – что вещество расходуется в ходе реакции.

Истинная (мгновенная) скорость реакции определяется соотношением

где dc – бесконечно малое изменение концентрации вещества за бесконечно малый промежуток времени dτ.

Основными факторами, определяющими скорость реакции, являются природа реагирующих веществ, концентрация, температура и катализатор. Скорость реакций с участием газообразных реагентов зависит также от давления.

Зависимость скорости реакции от концентрации. Все химические реакции можно разделить на гомогенные и гетерогенные . К гомогенным реакциям относятся реакции, протекающие между веществами, находящимися в одном агрегатном состоянии, если между ними отсутствуют поверхности раздела. К гомогенным реакциям относятся реакции между газами, неограниченно смешивающимися жидкостями и жидкими растворами. Гомогенные реакции протекают в объеме, т.е. имеются наиболее благоприятные условия для контакта молекул реагирующих веществ.

Реакции между веществами, находящимися в разных агрегатных состояниях или в одном агрегатном состоянии, но разделенными поверхностями раздела, относятся к гетерогенным реакциям. К ним относятся, например, реакции между газом и жидкостью, двумя несмешивающимися жидкостями, механическими смесями твердых веществ. В гетерогенных реакциях химический процесс протекает только на поверхностях раздела реагирующих фаз.

Зависимость скорости гомогенной реакции от концентрации определяется законом действующих масс (закон Гульдберга и Вааге, закон действия масс) : скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях их стехиометрических коэффициентов.

Для обратимой гомогенной химической реакции, записанной в общем виде,

(4.3)

скорость прямой реакции

скорость обратной реакции

Где – концентрации реагирующих веществ, моль/л; a, b, d, e – стехиометрические коэффициенты, или порядок реакции по реагенту A, B, D или E ; k 1 и k 2 – константы скоростей химических реакций.

Константа скорости химической реакции k зависит от температуры и природы реагирующих веществ, но не зависит от их концентрации. Если концентрации реагирующих веществ равны единице, то константа скорости численно равна скорости химической реакции.

Уравнения (4.4) и (4.5) называются кинетическими уравнениями химических реакций.

Скорость гетерогенных реакций не зависит от объемной концентрации реагирующих веществ, т.к. реакция протекает только на поверхности раздела фаз. Чем выше степень измельчения веществ, тем больше их поверхность и тем выше скорость протекания реакций. Скорость гетерогенных реакций зависит также от скорости подвода реагирующих веществ к поверхности раздела фаз и от скорости отвода продуктов реакции. Поэтому перемешивание реакционной смеси ускоряет протекание гетерогенной реакции.

Концентрации газообразных веществ могут быть выражены через парциальные давления. Парциальное давление газа в смеси равно тому давлению, которое производил бы газ, если бы он занимал объем всей смеси при тех же условиях. Парциальное давление i-го компонента газовой смеси () может быть рассчитано по формуле

где – общее давление смеси; x i – объемная или молярная доля i-го компонента в смеси.

Общее давление смеси газов равно сумме парциальных давлений компонентов:

Для прямой реакции (4.3), если вещества А и В находятся в газообразном состоянии, выражение для скорости реакции запишется следующим образом:

где – парциальные давления веществ А и В.

При изменении общего давления в n раз во столько же раз изменяется и парциальное давление каждого компонента и соответственно изменяется скорость реакции.

Пример 4.1. Написать выражения закона действующих масс для реакций:

а) 2NO (г) + Cl 2(г) ® 2NOCl (г) ;

б) СаСО 3(к) ® СаО (к) + СО 2(г) .

Решение. а) для прямой реакции и для обратной – ;

б) прямая реакция: карбонат кальция – твердое вещество, присутствие которого не влияет на скорость реакции, искомое выражение будет иметь вид , т.е. в данном случае скорость реакции при определенной температуре постоянна; обратная реакция: .

Пример 4.2. Во сколько раз следует увеличить концентрацию оксида углерода (II) в системе СО (г) + Н 2 О (г) ↔ СО 2(г) + +Н 2(г) , чтобы скорость прямой реакции увеличилась в 5 раз?

Решение. Запишем выражение для скорости прямой реакции:

Пусть начальная концентрация СО – , а конечная – . Запишем отношение скоростей прямой реакции:

, откуда следует, что , т.е.

для увеличения скорости прямой реакции в 5 раз концентрацию СО следует увеличить также в 5 раз.

Пример 4.3. Определить, как изменится скорость прямой реакции 2SO 2 + O 2 ↔ 2SO 3 , если общее давление в системе увеличить в 4 раза.

Решение. Увеличение давления в системе в 4 раза вызовет уменьшение объема системы в 4 раза, а концентрации реагирующих веществ возрастут в 4 раза.

Согласно закону действующих масс начальная скорость прямой реакции

После увеличения давления

После увеличения давления в 4 раза скорость реакции возросла в 64 раза.

Порядок реакции. Сумма показателей степеней при концентрациях или парциальных давлениях в кинетических уравнениях реакций называется порядком реакции . Для прямой реакции

порядок равен а+b, а для обратной – d+e. Эта величина характеризует тип зависимости скорости реакции от концентрации. Порядок реакции обычно нельзя определить теоретически по виду химического уравнения. Это связано с тем, что подавляющее большинство реакций являются сложными, т.е. они протекают через некоторое число промежуточных стадий (истинный механизм реакции), которые чаще всего неизвестны. Порядок каждой из промежуточных стадий может отличаться от порядка реакции, определяемого из уравнения (формальный порядок реакции), т.к. в уравнении приводятся обычно только исходные вещества и конечные продукты реакции (суммарный или глобальный механизм).

По этой причине истинный порядок химической реакции и порядок реакции по каждому реагенту определяют экспериментально. Истинный порядок реакции в отличие от формального может быть как целым, так и дробным и даже нулевым. Реакции с порядком выше трех неизвестны.

Молекулярность реакции. Число молекул или иных формульных единиц, участвующих в элементарном акте химического превращения, называется молекулярностью реакции.

Формальная молекулярность реакции, определяемая по уравнению химической реакции как сумма стехиометрических коэффициентов, обычно отличается от истинной молекулярности, находимой экспериментально. Причины те же, что и в случае различия истинного и формального порядка реакций.

Приведем несколько примеров простых реакций, чьи механизмы совпадают с уравнениями реакций.

1) Мономолекулярные реакции. К ним обычно относятся реакции диссоциации и изомеризации:

О 3 → О 2 + О

циклопропан пропен

2) Димолекулярные реакции:

I 2 + H 2 ↔ 2HI.

3) Тримолекулярные реакции:

2NO + O 2 = 2NO 2 ;

2NO + Br 2 = 2NOBr.

Большинство элементарных реакций относятся к моно- и димолекулярным взаимодействиям. Тримолекулярные реакции встречаются редко. Реакции с более высокой молекулярностью неизвестны, т.к. вероятность одновременного столкновения четырех и более частиц, сопровождающегося химическим превращением, чрезвычайно мала.

Зависимость скорости реакции от температуры. Для большинства реакций справедливо правило Вант-Гоффа: повышение температуры на 10К увеличивает скорость большинства реакций в 2–4 раза:

где и – скорости реакции при Т 1 и Т 2 ; γ – термический коэффициент скорости химической реакции, .

Увеличение скорости реакции вызвано ростом константы скорости реакции, поэтому формула (4.9.) может быть записана также в виде

, (4.10)

где и – константы скорости реакции при Т 1 и Т 2 .

Пример 4.4. Температурный коэффициент скорости реакции равен 2,8. Во сколько раз возрастет скорость реакции при повышении температуры от 20 до 75°С?

Решение. Подставим данные в выражение правила Вант-Гоффа (3.9):

Следовательно, скорость реакции увеличилась в 287 раз.

Пример 4.5. При температуре 80 °С реакция заканчивается за 20 с. Сколько времени будет длиться реакция при температуре 20 °С, если температурный коэффициент этой реакции равен 2,5?

Решение. Скорость химической реакции обратно пропорциональна времени ее протекания, следовательно,

где τ 1 и τ 2 – время протекания реакции при температурах Т 1 и Т 2 .

Правило Вант-Гоффа в данном случае можно записать как

Логарифмируем: lg t 1 = lg 20 + 6lg 2,5 = 1,3010 + 6×0,3979 = =3,6884;

t 1 = 4879 c = 1 ч 21 мин 19 с.

При температуре 20 °С реакция заканчивается за 1 ч 21 мин 19 с.

Элементарный акт химического превращения является результатом столкновения молекул реагирующих веществ. Молекулы газов и жидкостей испытывают ежесекундно огромное число столкновений (~10 10 столкновений/с в случае газов). Однако только очень малая доля столкновений заканчивается химическими превращениями. Такие столкновения называются эффективными соударениями . Молекулы, участвующие в эффективных соударениях, называют активными молекулами . От прочих молекул они отличаются значительно большей энергией. Избыточная энергия необходима молекулам для преодоления сил отталкивания внешних электронных оболочек и для образования активированного комплекса , т.е. промежуточного соединения между исходными веществами и конечными продуктами. В активированном комплексе старые связи еще не полностью разрушены, а новые еще не полностью образовались. Образование активированного комплекса в реакции взаимодействия водорода и йода можно представить следующей схемой:

исходные активированный конечные

вещества комплекс продукты

При повышении температуры быстро увеличивается доля молекул с высокой энергией, достаточной для образования активированного комплекса (рис. 4.1).

Изменение энергии в ходе химической реакции можно показать с помощью схемы процесса активации (рис. 4.2). По оси ординат отложена потенциальная энергия системы. Абсцисса носит название координаты реакции или реакционного пути . В процессе химического превращения переход системы из начального состояния с энергией ΣН i в конечное состояние с ΣН f происходит через энергетический барьер .

Энергия активации (Е *) это энергия, необходимая для перевода в состояние активированного комплекса 1 моль реагирующих веществ. Разность ΣН f - ΣН i составляет тепловой эффект реакции (Δ r H). Для обратной реакции тепловой эффект будет иметь ту же величину, но противоположный знак. Для обратной реакции энергия активации составит величину .

Из рис. 4.2 видно, что для перевода веществ в состояние активированного комплекса энергия всегда должна быть затрачена, независимо от знака теплового эффекта реакции.

Скорость реакции сильно зависит от величины энергии активации, которая в большинстве случаев находится между 20 и 280 кДж/моль. Реакции с энергиями активации до 40 кДж/моль протекают с высокими скоростями уже при обычных температурах, тогда как скорости реакций с энергиями активации больше 120 кДж/моль малы даже при повышенных температурах.

Уравнение Аррениуса. Зависимость константы скорости химической реакции от температуры описывается уравнением Аррениуса:

где k – константа скорости реакции; k o – константа, зависящая от природы реагирующих веществ (предэкспоненциальный множитель); е – основание натуральных логарифмов; Е * – энергия активации; R – универсальная газовая постоянная; Т – температура, К.

Из уравнения (4.11) следует, что константа скорости, а следовательно, и скорость химической реакции экспоненциально растут с увеличением температуры.

Константа скорости химической реакции зависит также от энтропии активации . Для того чтобы соударение активных молекул закончилось химическим превращением, они должны быть ориентированы так, чтобы в соприкосновение пришли реакционноспособные группы. В ином случае превращение не произойдет. Например, реакция этерификации бензойной кислоты

произойдет только при столкновении реагирующей частицы с группировкой _ СООН. При иных ориентациях реакция этерификации невозможна. Отношение числа благоприятных для реакции ориентаций к общему числу возможных ориентаций определяет величину энтропии активации. Чем сложнее молекулы реагирующих веществ, тем меньше энтропия активации и меньше скорость химической реакции.

Катализ. Скорость химических реакций сильно зависит от присутствия катализаторов. Например, реакция

2Н 2 О 2 = 2Н 2 О + О 2

идет очень медленно при комнатной температуре. При добавлении к пероксиду водорода небольшого количества оксида марганца (IV) MnO 2 реакция протекает бурно. Оксид мар- ганца (IV) является катализатором реакции разложения перексида водорода.

Катализаторами называют вещества, ускоряющие химические реакции и остающиеся после реакций химически неизменными. Физическое состояние катализатора может изменяться.

Существуют вещества, замедляющие скорость химических реакций, – ингибиторы .

Катализаторы разнообразных химических реакций в живых организмах носят название ферментов.

Многие катализаторы обладают селективностью, или избирательностью, т.е. способностью ускорять только одну из возможных реакций или только реакции одного класса. Например, этанол в присутствии оксида алюминия подвергается реакции дегидратации:

,

а в присутствии меди протекает реакция дегидрирования:

.

Активность катализаторов может быть повышена добавлением небольшого количества веществ, не обладающих каталитической активностью и называемых промоторами или каталитическими активаторами. Например, оксид алюминия Al 2 O 3 не является катализатором синтеза аммиака, но добавление нескольких процентов Al 2 O 3 к катализатору этой реакции – железу – увеличивает его активность в 20 раз. Следовательно, Al 2 O 3 – промотор.

С другой стороны, активность катализатора резко уменьшается в присутствии веществ, называемых каталитическими ядами . Они также обладают селективным действием. Так железо – катализатор синтеза аммиака – может быть отравлено кислородом, водой, оксидом углерода (II) CO, сульфидом водорода Н 2 S и др.

Если катализатор и реагирующие вещества находятся в одном агрегатном состоянии, обычно газообразном, жидком или растворённом, то катализ называется гомогенным . В роли катализаторов в гомогенном катализе часто выступают растворы кислот, оснований, солей d-элементов, растворители.

Катализ является гетерогенным , если катализатор и реагирующие вещества находятся в разных агрегатных состояниях или образуют самостоятельные фазы. В роли катализаторов в этом случае чаще всего выступают твердые вещества, обычно d-элементы или их соединения.

Следует отметить, что катализаторы не изменяют энтальпию и энергию Гиббса реакции и не влияют на положение химического равновесия реакции. Катализаторы только увеличивают в равной мере скорость прямой и обратной реакций.

Гомогенный катализ. Механизм действия катализаторов основан на теории промежуточных соединений (Н.Д. Зелинский, П. Сабатье). Согласно этой теории катализатор образует с реагирующими веществами промежуточные соединения. Энергия активации этого процесса меньше, чем энергия активации некаталитической реакции, что и ведет к увеличению скорости превращения.

Пусть имеются две реакции, протекающие с невысокой скоростью:

A + B = AB; CD = C + D.

В присутствии катализатора К реакции протекают в две стадии:

А + К = АК; CD + K = CDK,

где АК и CDK являются промежуточными соединениями (интермедиатами) , образующими конечные продукты:

АК + В = АВ + К; CDK = C + D + K.

Скорость реакции увеличится, если энергия активации реакций образования и распада промежуточных соединений будет меньше энергии активации некаталитической реакции. В противоположном случае скорость реакции уменьшится и вещество К будет выполнять роль ингибитора. Из схем превращения следует, что после реакции катализатор остается химически неизменным.

Энергетическая схема реакции A + B = AB приведена на рис. 4.3. Из рисунка следует: 1) энергии из промежуточных стадий меньше энергии активации некаталитической реакции Е * ; 2) использование катализатора не изменяет энтальпию реакции Δ r H.

Примером гомогенного катализа может быть получение серной кислоты башенным способом. Некаталитическая реакция протекает по уравнению

2H 2 SO 3 + O 2 = 2H 2 SO 4 .

Катализатором является газообразный оксид азота (II) (NO), в присутствии которого реакция идет по следующей схеме:

2NO + O 2 = 2NO 2 ;

NO 2 + H 2 SO 3 = H 2 SO 4 + NO.

В этом процессе NO 2 является промежуточным соединением.

Гомогенными каталитическими реакциями являются ферментативные процессы, протекающие в живых организмах.

Недостатком гомогенных промышленных каталитических процессов является необходимость разделения продуктов реакции и катализатора. По этой причине в промышленности чаще используют гетерогенный катализ.

Гетерогенный катализ. Наиболее распространен гетерогенный катализ с использованием твердых катализаторов и жидких или газообразных реагентов. Механизм действия твердых катализаторов очень сложен и до конца не известен. Существует несколько теорий гетерогенного катализа.

Исходной стадией гетерогенного катализа является адсорбция реагентов, т.е. связывание молекул реагирующих веществ с поверхностью другого вещества, в данном случае с поверхностью катализатора. Продукт взаимодействия катализатора с реагирующими веществами может рассматриваться как промежуточное соединение. Процесс адсорбции происходит в несколько стадий. Благодаря диффузии молекулы реагирующих веществ подходят к поверхности, где происходит их адсорбция вследствие высокой реакционной способности атомов или ионов, находящихся в поверхностном слое катализатора. Это объясняется ненасыщенностью связей атомов, находящихся на поверхности, электростатическим взаимодействием на геометрических дефектах поверхности и другими причинами. Взаимодействие адсорбированных частиц реагентов с поверхностью катализатора ведет к увеличению их энергии. По этой причине процесс называется активированной адсорбцией. Активированная адсорбция протекает не на всей поверхности катализатора, а только на так называемых активных центрах , роль которых выполняют различные дефекты поверхности. Число активных центров определяет активность катализатора и зависит от способа приготовления катализатора и площади его поверхности. По этой причине катализаторы обычно наносят на пористые носители с сильно развитой поверхностью. Отравление катализаторов каталитическими ядами объясняется связыванием этими соединениями активных центров.

В результате активированной адсорбции изменяется электронная структура молекул реагентов, что ведет к снижению энергии активации, и на поверхности катализатора протекает химическая реакция.

Продукт химической реакции покидает поверхность катализатора, т.е. происходит десорбция, и за счет диффузии переходит в окружающую среду.

Все три стадии гетерогенного каталитического процесса – адсорбция, образование активированного комплекса и десорбция – являются активационными процессами и характеризуются собственными энергиями активации. Скорость каталитической реакции возрастает, если энергия активации каждой из этих стадий будет ниже энергии активации соответствующей некаталитической реакции (рис. 4.4).

Примером гетерогенного катализа может быть процесс получения серной кислоты контактным способом с использованием в качестве катализатора окисления SO 2 кислородом V 2 O 5 – оксид ванадия (V). Реакция протекает по следующим стадиям:

V 2 O 5 . nSO 3 + SO 2 → V 2 O 4 . (n+1)SO;

желтый зелено-голубой

V 2 O 4 . (n+1)SO 3 + 1/2O 2 → V 2 O 5 . (n+1)SO 3 ;

V 2 O 5 . (n+1)SO 3 → V 2 O 5 . nSO 3 + SO 3 ,

или суммарно SO 2 + 1/2O 2 → SO 3 .

Промежуточными соединениями в данной реакции яв-

ляются V 2 O 4 . (n+1)SO 3 и V 2 O 5 . (n+1)SO 3 .

Вопросы и задачи для самостоятельной подготовки

1. Дайте определения средней и истинной скоростей химической реакции.

2. Какой смысл имеют положительный и отрицательный знак скорости химической реакции?

3. Сформулируйте закон действующих масс и запишите его выражение для гомогенной реакции 2А +3В.

4. Напишите выражения закона действующих масс (кинетические уравнения) с использованием молярных концентраций и парциальных давлений для прямой реакции:

а) N 2 Н 4(г) + О 2(г) = N 2(г) +2Н 2 O (г) ;

б) Fe 3 O 4(т) + СО (г) =3FeО (т) + СО 2(г) ;

в) 6НF (г) +N 2(г) =2NF 3(г) +3Н 2(г) ;

г) СuO (т) +С (Т) =Сu (т) +СО (г) .

5. Приведите по 2 примера гомогенных и гетерогенных химических реакций. Запишите для них выражения для скорости химической реакции.

6. От каких факторов зависит численное значение константы скорости химической реакции?

7. Как изменится скорость прямой реакции SO 2(г) +2H 2 S (г) =3S (т) +2Н 2 O (г) , если: а) увеличить концентрацию оксида серы (IV) в 4 раза; б) уменьшить концентрацию сероводорода в 2 раза?

Ответ: а) скорость реакции увеличится в 4 раза; б) скорость реакции уменьшится в 4 раза.

8.Во сколько раз скорость обратной реакции станет больше скорости прямой реакции в реакции 4NН 3(г) +3O 2(г) ↔2N 2(г) +6Н 2 О (г) , если увеличить давление в 2 раза?

Ответ: в 2 раза.

9. Сформулируйте понятия порядка и молекулярности реакции.

10. Каким образом по уравнению химической реакции можно сделать вывод о различиях истинного и формального порядка и молекулярности.

11. Определите формальный порядок и молекулярность прямой и обратной реакции в примере 4в. Протекают эти реакции в одну или в несколько стадий?

12. Сформулируйте закон Вант-Гоффа.

13. Сформулируйте определение термического коэффициента скорости химической реакции.

14. Известны химические реакции, протекающие в жидкокристаллических растворителях, с термическим коэффициентом γ<1. Как изменяется скорость этих реакций с увеличением температуры?

15. Температурный коэффициент скорости реакции равен 2. Во сколько раз изменится скорость реакции, если повысить температуру от 20 до 80°С?

Ответ: увеличится в 64 раза.

16. При какой температуре реакция закончится за 1 мин, если при температуре 0°С она проходит за 60 мин.? Температурный коэффициент скорости реакции равен 3.

Ответ: 37,3°С.

17. Две реакции при температуре 60°С протекают с одинаковой скоростью. Температурный коэффициент скорости первой реакции равен 2, а второй – 3. Как будут относиться скорости реакций, если первую проводить при температуре 100 °С, а вторую – при температуре 40 °С?

Ответ: скорость первой реакции возрастет в 16 раз, а второй – уменьшится в 9 раз. Отношение скоростей составит v 1 /v 2 = 144.

18. Дайте определение энергии активации химической реакции.

19. Изобразите энергетическую схему хода эндотермической реакции.

20. Каким образом величина теплового эффекта химической реакции влияет на энергию активации? Ответ аргументируйте.

21. Для двух реакций, протекающих при одинаковых температурах k 1 >k 2 . Как соотносятся между собой величины , и ?

22. Дайте определение явления катализа.

23. Каким образом можно повлиять на активность катализатора?

24. Изобразите энергетическую схему гомогенной каталитической реакции. Опишите основные стадии процесса.

25. Изобразите энергетическую схему гетерогенной каталитической реакции. Опишите основные стадии процесса.

26. Укажите основные области применения катализа. Приведите примеры каталитических процессов.

Влияние давления на скорость химической реакции

Давление так же оказывает очень заметное влияние на скорость химической реакции, но оно имеет смысл лишь для гомогенных систем, а именно для газовой. Поскольку при взаимодействии твердых и жидких веществ между собой или в гомогенных реакциях не какого изменения в скорости не наблюдается.

При сжатии газовых реакционных смесей в области давление, ограниченных десятками МПа, наблюдается увеличение скорости реакций и смещение химического равновесия. Это объясняется главным образом изменением концентраций реагирующих веществ. Для веществ в конденсированной фазе или для газов при давлении выше 200-300 МПа повышение концентрации реагентов с ростом давление невелико, тем не менее многие процессы чувствительны к давлении. Так, давление существенно влияет на равновесие электролитической диссоциации кислот и оснований, изменяет концентрацию комплексов с переносом заряда, влияет на равновесие кето-енольной таутомерии, на конфирмационное равновесие, смещает равновесие мономер-полимер и т.д. Под давлением удается осуществить полимеризацию веществ, для которых равновесие мономер-полимер при атмосферном давление смещено в сторону мономера.

Скорости реакций по-разному изменяются с давлением. Бимолекулярные реакции обычно ускоряются с давление, мономолекулярные - замедляются. Так, скорость диенового синтеза при повышении давление до 1000 МПа может возрастать в тысячи раз, а реакции распада обычно затормаживаются. Согласно активированного комплекса теории, зависимость от давления константы скорости элементарной реакции к (Т, р)при постоянной температуре определяется изменением молярного объема реагентов при образовании активированного комплекса

Изменение скорости химических процессов может быть обусловлено также влиянием давление на физические свойства среды. Так, вследствие возрастания вязкости с повышением давление реакции могут перейти из кинетической области протекания в диффузионную, когда скорость реакции контролируется диффузией реагирующих частиц. Изменение среды, давление влияет на скорость ионных реакций. При этом объемные эффекты, вызванные сольватацией ионов или заряженных групп молекул, учитываются с помощью уравнения Друде-Нернста-Борна.

Химическое взаимодействие в твердой фазе обычно замедляется с ростом давления. Для интенсификации твердофазных реакций (синтез минералов, полимеризация и др.) их проводят при высоких температурах.

Взаимодействие твердых веществ под давлением резко усиливается, если реагенты подвергаются пластической деформации сдвига. В этих условиях реализуются многие твердофазные химические процессы: полимеризация, нуклеофильное присоединение аммиака, воды, карбоксильной группы к связи С=С, синтез амидов и пептидов, разложение пероксидов, карбонилов и оксидов металлов, неорганических солей, реакции этерификации и других. Ароматические соединения при деформации под давлением нередко претерпевают превращения, сопровождающиеся разрывом цикла:

Скорости химических реакций при одновременном действии высоких давление и деформаций сдвига очень велики и могут превосходить скорости соответствующих жидкофазных процессов при тех же давление и температурах в миллионы и более раз. Реакционная способность твердых веществ (константы скорости, выходы продуктов) в значительной степени зависят от физических свойств среды (пластичности, предельного напряжения сдвига, кристаллической структуры). Как правило, реакционная способность вещества возрастает, если его деформировать в смеси с пластичным веществом, обладающим напряжением сдвига большим, чем у чистого реагента. В условиях деформации выход продуктов реакции является функцией деформации сдвига (при постоянных давление и температуре) и в широких пределах не зависит от времени деформирования реакционной смеси. Время деформирования может быть очень малым и исчисляться долями секунд. Зависимость выхода продуктов от деформации сдвига удается описать в ряде случаев (например, при полимеризации акриламида) методами формальной кинетики при замене в дифференциальных уравнениях времени на деформацию сдвига.

Влияние температуры на скорость химической реакции

Что касается влияния температуры, то этот фактор действует одинаково как на скорость реакции v, так и на константу скорости k - обе эти величины быстро возрастают с повышением температуры. Повышение температуры приводит к увеличению кинетической энергии химических частиц, т.е. увеличивает число частиц, имеющих энергию выше энергии активации. При повышении температуры число столкновений частиц также увеличивается, что в некоторой степени увеличивает скорость реакции. Однако повышение эффективности столкновений за счет увеличения кинетической энергии оказывает большее влияние на скорость реакции, чем увеличение числа столкновений.

Еще в XIX веке голландский физико-химик Вант-Гофф опытным путем обнаружил, что при повышении температуры скорости многих реакций увеличивается в число раз, равное температурному коэффициенту скорости (примерно в 2-4 раза)

При повышении температуры от T до T"

отношение скоростей реакций T" и T равно

температурному коэффициенту скорости в степени (T" - T)/10:

T"/T = (T"-T)/10.

Для многих гомогенных реакций температурный коэффициент скорости равен 2-4 (правило Вант-Гоффа). Зависимость скорости реакции от температуры можно проследить на примере взаимодействия оксида меди(II) с разбавленной серной кислотой.

СuО + Н2SО4 = СuSO4 + Н2О.

При комнатной температуре реакция протекает очень медленно. При нагревании реакционная смесь быстро окрашивается в голубой цвет за счет образования сульфата меди(II) в водном растворе:

Влияние природы реагирующих веществ на скорость химической реакции

Итак, на скорость реакции оказывает влияние природа реагирующих веществ. Рассмотрим для примера реакции металлов с кислотами. Если опустить в пробирки с разбавленной серной кислотой одинаковые кусочки меди, цинка, магния и железа, можно увидеть, что интенсивность выделения пузырьков газообразного водорода, характеризующая скорость протекания реакции, для этих металлов существенно различается. В пробирке с магнием наблюдается бурное выделение водорода, в пробирке с цинком пузырьки газа выделяются несколько спокойнее. Еще медленнее протекает реакция в пробирке с железом (рис.). Медь вообще не вступает в реакцию с разбавленной серной кислотой. Таким образом, скорость реакции зависит от активности металла.

Растворение железа (а) и магния (б) в разбавленной серной кислоте

При замене серной кислоты (сильной кислоты) на уксусную (слабую кислоту) скорость реакции во всех случаях существенно замедляется. Можно сделать вывод, что на скорость реакции металла с кислотой влияет природа обоих реагентов - как металла, так и кислоты.