Меню Рубрики

Поверхностная активность. Поверхностно-активные и поверхностно-неактивные вещества

Наличие гидрофильной и олеофильной (гидрофобной) частей у молекул ПАВ является характерной отличительной особенностью их строения. По способности к диссоциации в водных растворах поверхностно-активные вещества делят на ионогенные и неионогенные. В свою очередь ионогенные ПАВ подразделяют на анионные, катионные и амфолитные (амфотерные).

Анионные ПАВ диссоциируют в воде с образованием поверхностно-активного аниона. К ПАВ этого типа, составляющего большую часть мирового производства всех поверхностно-активных веществ, относятся:

а) карбоновые кислоты и их соли (мыла) общей формулы RCOOM (где М – одновалентный металл), например пальмитат натрия C 15 H 31 COONa, стеарат натрия C 17 H 35 COONa, олеат натрия C 17 H 33 COONa;

б) алкилсульфаты ROSO 2 OM;

в) алкиларилсульфонаты RArSO 2 OM;

г) вещества, содержащие другие типы поверхностно-активных анионов, например фосфаты, тиосульфаты и т. д..

В кислых средах соли карбоновых кислот переходят в слабодиссоциированные и малорастворимые кислоты, а в присутствии некоторых катионов (кальция, магния) образуют нерастворимые соли, что резко снижает эффективность их действия как ПАВ, особенно ухудшает их моющее действие. Большими преимуществами в этом отношении обладают алкилсульфаты и алкилсульфонаты, которые являются солями сильных кислот и поэтому могут быть использованы в кислых и солевых растворах.

Катионные ПАВ диссоциируют в воде с образованием поверхностно-активного катиона. К катионным ПАВ относятся:

а) соли первичных, вторичных и третичных алифатических и ароматических аминов;

б) соли алкилзамещенных аммониевых оснований и т. д.

Катионные ПАВ – наиболее токсичные и наименее биологически разлагаемые из всех ПАВ; их часто используют в качестве бактерицидных, фунгицидных, дезинфицирующих веществ, ингибиторов коррозии.

Амфолитные ПАВ содержат две функциональные группы, одна из которых имеет кислый, а другая оснóвный характер, например карбоксильную и аминную группы. В зависимости от рН среды амфолитные ПАВ проявляют анионактивные или катионактивные свойства:

Неионогенные ПАВ не диссоциируют в растворах на ионы. Методы их получения основаны на реакции присоединения этиленоксида к спиртам, карбоновым кислотам, аминам и другим соединениям. Например, оксиэтилированные алкилспирты марки «ОС» синтезируют по реакции:

ROH + nH 2 C-CH 2 ® RO(CH 2 CH 2 O) n H

Полиоксиэтиленовая цепь определяет гидрофильные свойства неионогенных ПАВ. Изменяя длину полиоксиэтиленовой цепи, легко регулировать их коллоидно-химические свойства. Эти ПАВ применяются в любых средах (кислой и щелочной), а также в присутствии растворимых солей. Полиоксиэтиленовые эфиры алкилфенолов марки ОП обладают хорошими моющими свойствами.

К недостаткам этих ПАВ относится медленное разложение из-за наличия в их составе ароматического радикала и, как следствие, накопления их в объектах окружающей среды. Неионогенные ПАВ с алкильными радикалами способны биологически разлагаться достаточно полно и быстро.

Все дифильные поверхностно-активные вещества относительно поведения их в воде делят на истинно растворимые и коллоидные.

К первой группе относится большой класс растворимых в воде дифильных органических соединений с небольшим углеводородным радикалом, например низшие спирты, фенолы, кислоты и их соли, амины. Вещества этого типа в растворе находятся в молекулярно-дисперсном состоянии вплоть до концентраций, соответствующих их насыщенным растворам и разделению системы на две сплошные фазы. Эти вещества применяются в качестве смачивателей вспенивателей, гидрофобизаторов при флотации, диспергаторов, облегчающих процессы образования новых поверхностей, и т. д.

Особый интерес представляют коллоидные поверхностно-активные вещества. Именно они в первую очередь понимаются под термином ПАВ. Главной отличительной особенностью этих веществ является способность образовывать термодинамически устойчивые (лиофильные) гетерогенные дисперсные системы(ассоциативные или мицеллярные коллоиды). К основным свойствам коллоидных ПАВ, обусловливающим их широкое применение, относятся высокая поверхностная активность; способность к самопроизвольному мицеллообразованию – образованию лиофильных коллоидных растворов при концентрации ПАВ выше некоторого определенного значения, называемого критической концентрацией мицеллообразования (ККМ); способность к солюбилизации – резкому увеличению растворимости веществ в растворах коллоидных ПАВ вследствие их «внедрения» внутрь мицеллы; высокая способность стабилизировать различные дисперсные системы.

Поверхностная активность коллоидных ПАВ зависит, главным образом, от длины углеводородного радикала. Увеличение длины радикала на одну группу -СН 2 - приводит к возрастанию поверхностной активности приблизительно в 3,2 раза (правило Дюкло – Траубе ). Это правило соблюдается в основном для истинно растворимых ПАВ.

Для органических сред правило Дюкло – Траубе обращается: поверхностная активность снижается с увеличением длины углеводородного радикала ПАВ.

В заключение можно отметить, что основной количественной характеристикой ПАВ является поверхностная активность, которая определяет их способность понижать поверхностное натяжение, вызывать эмульгирование, пенообразование, диспергирование и стабилизацию, смачивание и другие явления.

Текущая страница: 7 (всего у книги 19 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:

100% +

40. Обобщенное уравнение теории Дубинина объемного заполнения микропор, частные случаи этого уравнения

Поры, в отличие от молекул, взаимодействуют друг с другом, что подобно образованию полимолекулярного слоя, также множество молекул пор находится в контакте со стенами пор. В микропорах происходит объемное заполнение адсорбционного пространства, поэтому была принята за основной параметр пористого адсорбента не сама поверхность, а объем пор. В них может происходить перекрытие полей поверхностных сил, противоположных стене пор, что значительно повышает энергию адсорбции. Такой эффект наблюдается при исследовании адсорбции вещества некоторыми пористыми адсорбентами одного вида, но имеющего разные размеры пор. Если размеры пор сопоставимы, то происходит резкое увеличение процесса адсорбции в области малых равновесных давлений. В более крупных пористых материалах такой тип взаимодействия характерен только для первого слоя. В следующих слоях это взаимодействие не зависит от природы адсорбента, а может определяться только природой адсорбата. Еще у микропор проявляется силовой эффект, который заключается в адсорбировании молекул, размеры которых меньше размеров микропор или соизмеримы с ними. Степень заполнения адсорбента представляют как отношение величины адсорбции А к максимальной адсорбции А 0 , или как отношение заполненного объема V к предельному пространственному адсорбированному объему V 0 , которые приведены к нормальным условиям (давление и температура). Тогда получим:

V = V 0 exp[– (ε /β E 0) n ].

Для работы:

A = A 0 exp[– (ε /β E 0) n ],

где величина Е представляет собой энергию адсорбции, которая характерна для стандартного адсорбата.

Эти уравнения являются общими уравнениями теории объемного заполнения микропор. Прологарифмируем уравнение:

lnA = lnA 0 – (1 / β n E 0 n)ε n .

Величина Е называется характеристической энергией адсорбции. Отношение этих характеристических энергий для двух типов адсорбатов равно коэффициенту аффинности. Показатель степени n может быть определен только целыми числами и равен от 1 до 6 в зависимости от природы адсорбента. Строят прямую в координатах, которая дает возможность определить все изотермы адсорбции данного адсорбата при разных температурах, а коэффициенты аффинности – рассчитать зависимости для других видов адсорбата. Для многих активных углей справедливо

lnA = lnA 0 – B /T 2 / β 2 2 ,

где параметр В – const , характеризующая энергию адсорбции.

В этом случае коэффициент аффинности для активных углей может быть приблизительно равен отношению парахоров рассматриваемого вещества и стандартного. Парахор не зависит от температуры, поэтому этой величиной пользуются для определения характеристики адсорбатов. Тогда для крупнопористых активных углей справедливо следующее уравнение, причем здесь учитывается что n = 1:

lnA = lnA 0 – B /T / β ,

где В характеризует энергию адсорбции на крупнопористом материале.

Последние уравнения похожи на уравнение Фрейндлиха, в котором показатель степени при давлении может быть равен выражению перед логарифмом отношения давлений. И уравнение Фрейндлиха является частным случаем общего уравнения, которое характерно для полученной изотермы адсорбции, оно приведено в теории объемного заполнения микропор.

41. Адсорбция газов и паров на пористых материалах

Пористыми телами называют твердые тела, внутри которых имеются определенные поры, которые способны обусловливать наличие внутренней межфазной поверхности. Поры такого вида могут быть заполнены газом или жидкостью. Многие пористые системы можно представить как более или менее жесткие пространственные структуры, которые получили название «сетки» (или «каркасы»). Пористые тела могут быть также очень хрупкими, но в то же время обладать эластическими свойствами.

Пористые материалы обладают сильно различающейся адсорбционной способностью по отношению к влаге. В качестве адсорбентов, которые используются для извлечения, применяют специально получаемые пористые материалы, такие виды материалов также должны обладать прочностью и избирательностью. Высокодисперсные пористые материалы получают двумя методами.

Первый метод заключается в синтезе гидрозоля с последующим его осаждением до геля, полученный гель потом сушат. Адсорбенты корпускулярной структуры получают, получаемый высокопористый материал дробят, гранулируют или таблетируют. Примерами таких адсорбентов являются силикагели, алюмогели, окись магния. Существует второй метод , основанный на обработке крупнопористых материалов агрессивными газами или жидкостями. Такой тип обработки характерен для получения пористых материалов, имеющих губчатую природу, метод получения углей. Также пористые материалы можно разделить по группам.

1. Макропористые материалы. Имеют очень крупные поры – до нескольких сот нанометров. В адсорбентах и катализаторах такими порами можно пренебречь, т. к. они играют роль всего лишь транспортных каналов.

2. Переходно-пористые материалы. Небольшого размера поры – от десятка нанометров до сотни. Примерами материалов с такими порами являются силикагели, алюмогели, силикагели на основе алюминия.

3. Микропористые материалы. Размеры пор составляют несколько десятых долей нанометров к микропористым телам относятся цеолиты и некоторые активированные угли. Многие промышленные адсорбенты таких типов характеризуются широкой полидисперсностью и могут относиться к смешанным типам всех представленных типов адсорбентов. Полидисперсность таких материалов может быть определена распределением пор по размерам.

Количественные характеристики пористых материалов: одной из самых важных характеристик является пористость – отношение объема пор V п к общему объему всего тела V п:

П = V п / V п,

Пористость способна определять объем пор, который приходится на единицу объема всего тела, т. е. определяет долю всех пустот в его структуре. Может быть либо безразмерной величиной, либо измеряться в процентах. Если пористое тело имеет корпускулярную структуру, то для таких структур применяют удельную поверхность :

S уд = 3 / rρ ,

где r – радиус; ρ – плотность.

Исходя из этой величины можно определить удельную поверхность, зная фактически только радиус частиц, из которых образован материал. Также к пористым материалам применима величина «общая пористость», которая складывается из трех составляющих: пористостей открытых, закрытых, тупиковых пор в единице объема всего пористого тела.

Значит, с увеличением общей поверхности число пор как закрытого, так и тупикового характера уменьшается. И очевидно, что при адсорбции закрытые типы пор не участвуют в процессе.

42. Органические поверхностно-активные вещества (ПАВ). Классификация ПАВ

Поверхностно-активными веществами относительно воды являются многие органические соединения, а именно жирные кислоты, соли жирных кислот, спирты, амины, как ароматические, так и алифатические. Характерной особенностью поверхностно-активных веществ является их дифильность, т. е. строение молекулы из двух частей: полярной группы и неполярного углеводородного радикала. Все поверхностно-активные вещества можно разделить на три большие группы в соответствии с особенностями их строения:

1. Анионные поверхностно-активные вещества диссоциируют в воде, образуя отрицательно заряженные поверхностно-активные ионы. Важнейшими представителями этой группы являются обычные мыла и соли сульфокислот. Обычные мыла состоят из солей предельных и некоторых непредельных карбоновых кислот (С 15 Н 31 СООNa – пальмитат натрия, эту соль используют для технических целей, выделяя из животных жиров). Меньшее значение имеют калиевые и аммонийные мыла этих же кислот, жидкие в обычных условиях. Обычное мыло, имеющееся в продаже, содержит большое количество воды, а часто и примеси различных веществ, особенно электролитов, о чем следует помнить при его использовании.

2. Катионные поверхностно-активные вещества диссоциируют в воде, образуя положительно заряженные поверхностно-активные ионы. Из растворов этих поверхностно-активных веществ на поверхности адсорбируются катионы, и поверхности становится положительно заряженной. Например, С 18 Н 37 NH 3 Cl – октадециламмонийхлорид. Одновременное присутствие в водном растворе анионных и катионных поверхностно-активных веществ обычно не представляется возможным, т. к. в таком растворе из большого числа катионов и анионов образуется весьма слабодиссоциируемая соль, практически нерастворимая в воде. В качестве поверхностно-активных веществ в последнее время широко применяют и алкилсульфаты.

Неионогенные поверхностно-активные вещества , молекулы которых не способны к диссоциации. Дифильные части таких поверхностно-активных веществ обычно состоят из длинной углеводородной цепочки с небольшим количеством полярных, но неионогенных групп на конце молекулы, которая обусловливает растворимость этих веществ. Например, оксиэтилированные поверхностно-активные вещества, преимущество которых выражается в возможности при их получении регулировать гидрофильность молекулы путем изменения числа атомов углерода гидрофобной части цепи и числа оксиэтиленовых групп (С n H 2n+1 (OCH 2 CH 2) m OH). Благодаря этому можно получать вещества с заранее выбранными свойствами, рассчитанными на конкретную область применения, эти вещества также не образуют солей и поэтому хорошо растворяются в жесткой воде. Адсорбция неионогенных поверхностно-активных веществ из водных растворов превращает гидрофобные поверхности в гидрофильные. Важной характеристикой поверхностно-активного вещества является гидрофильно-липофильный баланс (ГЛБ) . Числа ГЛБ могут быть вычислены по специальным формулам как сумма групповых чисел или определены опытным путем. В качестве первого приближения используют теорию Гриффина , которая была развита Дэвисом . Она позволяет с энергетических позиций количественно оценить и выразить в виде условных групповых чисел степень, с которой взаимодействуют с водой отдельные группы частиц, из которых состоят поверхностно-активные вещества. Групповые числа для гидрофильных групп положительны, а липофильных – отрицательны. Чем больше баланс сдвинут в сторону гидрофильности, тем выше число ГЛБ.

Числа ГЛБ определяют области применения поверхностно-активных веществ.

43. Области применения ПАВ. Проблема биоразлагаемости ПАВ

Поверхностно-активные вещества имеют огромное практическое применение. Нет ни одной отрасли хозяйства, где бы ни использовали мыла, мылоподобные вещества. Ценные свойства поверхностно-активных веществ обусловлены образованием в растворе мицелл с высокой поверхностной активностью, короче говоря, способностью образовывать поверхностно-адсорбированные слои.

Также широко поверхностно-активные вещества используются для улучшения смачивания различных поверхностей водой, для получения стойких эмульсий и пен, а также для процессов флотации. Основное практическое применение поверхностно-активных веществ – это мыла. Известно, что твердые или жидкие загрязнения удаляются с поверхности волокон чистой водой с очень большими усилиями, даже при повышенной температуре и при интенсивном механическом воздействии. Важно отметить, что этот процесс пойдет легче, если для уборки используют раствор поверхностно-активного вещества. Моющее действие таких поверхностно-активных веществ связано с рядом различных эффектов.

1. В присутствии в воде поверхностно-активного вещества понижается поверхностное натяжение раствора, тем самым улучшается смачивание ткани моющей жидкостью. Это способствует проникновению жидкости в тонкие капилляры грязной ткани, в которые чистая вода проникнуть не может.

2. Молекулы мыла адсорбируются на поверхности волокна и частицах твердых или жидких загрязнений, что способствует отрыву грязевых частиц и их удалению.

3. Адсорбированные пленки на поверхности частиц загрязнений придают им достаточно высокую агрегативную устойчивость и предупреждают их прилипание в другом месте.

4. В присутствии поверхностно-активных веществ в моющей жидкости образуется пена, которая содействует механическому уносу загрязнений или флотации тех загрязнений, частицы которых вследствие пониженной способности к смачиванию прилипают к пузырькам воздуха.

Свойства поверхностно-активных веществ п роявляют почти все вещества, носящие дубящий характер, которые являются производными многоатомных фенолов, которые используются при дублении кожи. К красителям, проявляющим в растворах все особенности, свойственные растворам поверхностно-активных веществ, можно отнести ряд синтетических соединений-красителей.

Растворы таких красителей сходны с растворами высокомолекулярных соединений, они могут обладать сравнительно высокой агрегативной устойчивостью, а образующийся осадок при введении какого-либо электролита способен диспергироваться в чистой воде. Также поверхностно-активные вещества оказывают стабилизирующее действие на межфазную поверхность. Это определяется высокой поверхностной активностью вещества, т. к. концентрация поверхностно-активного вещества в десятки тысяч раз превышает объемную концентрацию.

Для неионогенных поверхностно-активных веществ вопрос о стабилизации дисперсных систем не рассматривается, и это является одной из проблем коллоидной химии. Также к растворам поверхностно-активных веществ добавляют сульфокислоты, которые вместе используют для производства мыла, позволяют их применять в жесткой воде и даже кислой среде.

При введении в достаточно концентрированные растворы поверхностно-активных веществ практически нерастворимых в воде органических веществ (алифатических и ароматических углеводородов, малорастворимых красителей) последние способны коллоидно растворяться, при этом образуются почти прозрачные термодинамически равновесные растворы, что позволяет увеличивать время действия поверхностно-активных веществ на поверхность.

44. Поверхностное натяжение растворов ПАВ

Баланс молекулярных сил, а следовательно, и равновесное значение поверхностного натяжения устанавливаются практически мгновенно. Изотерма поверхностного натяжения, характеризующая зависимость этой величины от концентрации поверхностно-активного вещества, состоит из прямолинейного участка падения поверхностного натяжения, криволинейного участка, которое описывается уравнением Шишковского. На этом последнем участке поверхностное натяжение почти перестает изменяться, т. к. вновь вводимое поверхностно-активное вещество не адсорбируется на границе «раствор – воздух». Для поверхностно-активных веществ, не обладающих коллоидной растворимостью, участок на изотерме поверхностного натяжения сдвинут в область более высоких концентраций. На поверхности же растворов поверхностно-активных веществ должна установиться равновесная концентрация поверхностно-активного вещества, что осуществляется в результате процессов диффузии. Поэтому, если молекулы поверхностно-активного вещества большие, медленно диффундирующие, например молекулы из которых состоят высшие жирные кислоты и их соли, равновесное значение поверхностного натяжения на границе «раствор – воздух» может устанавливаться довольно долго. Тонкий слой на поверхности поверхностно-активного вещества при увеличении концентрации должен насыщаться. С ростом концентрации поверхностно-активного вещества число молекул в слое увеличивается, «хвосты» молекул приобретают вертикальное положение. Дальнейшее повышение концентрации поверхностно-активных веществ может привести к небольшому увеличению поверхностного натяжения и хорошей растворимости, из-за чего на границе раздела «жидкость – воздух» появляется небольшая часть этого вещества, которая попадает туда в результате диффузии из объема. При малых концентрациях поверхностно-активных веществ поверхностное натяжение раствора σ уменьшается прямо пропорционально концентрации с , т. е.

Δ = σ σ – σ = kc ,

где D – уменьшающееся поверхностное натяжение; σ σ – σ – поверхностные натяжения чистого раствора и растворителя; k – константа.

Но при сравнительно больших концентрациях снижение поверхностного натяжения во времени с возрастанием концентрации, описывается уравнением Шишковского , которое он предложил в 1908 г:

Δ = σ σ – σ = σ σ B ln(с / A + 1),

где В – const, равная 0,2 при температуре 20°,1/А – const, характерная для каждого поверхностно-активного вещества.

Это уравнение Шишковского хорошо применимо для вычисления поверхностного слоя жирных кислот, с числом атомов углерода не более восьми. И. Ленгмюр в 1917 г. использовал уравнение Шишковского в дифференцированном виде, что позволило перейти от уравнения Гиббса к уравнению Ленгмюра.

Σ σ – σ = σ σ В ln(с / A + 1) = σ σ B ln(с + А / А ) = σ σ B ln(с + А ) – σ σ B lnА .

Преобразовав это уравнение, получили:

– dσ / dc = Bσ σ / А + С .

Затем подставили это уравнение в уравнение Гиббса :

Г = Bσ σ / RT *С / А / 1 + С / А .

Обозначили величину Bσ σ /RT через α max , а 1 / А – через R , учли также тот факт, что при малых концентрациях Г практически равно α , и тогда записали что

α = α ma x kc / (1 + кс ),

где величина α – величина адсорбции, пропорциональная α .

45. Термодинамическое обоснование правила Траубе-Дюкло

Молекулы поверхностно-активных веществ обычно дифильны, в своем составе имеют полярную и неполярную части. Полярной частью поверхностно-активных веществ могут быть следующие группы:

– СООН, – OH, – NH 2 , -SH, – CN, – NO 2 , -NCS, – CHO, – SO 3 H.

Неполярной частью обычно являются алифатические или ароматические радикалы различного состава и строения (бензильный, фенильный). П. Э. Дюкло , а затем И. Траубе изучали поверхностное натяжение водных растворов представителей карбоновых жирных кислот и нашли закономерность, что поверхностная активность этих веществ на границе «раствор – газ» тем выше, чем больше длина углеводородного радикала, входящего в состав молекулы, причем поверхностная активность, как показали расчеты, увеличивается в 3,2 раза на каждую метиленовую группу. Можно сформулировать правило и по-другому, когда длина цепи жирной карбоновой кислоты возрастает в арифметической прогрессии, ее поверхностная активность увеличивается в геометрической прогрессии. Подобное же отношение должно соблюдаться при удлинении молекулы и для величины 1/А , поскольку поверхностная активность веществ при достаточно малых концентрациях пропорциональна удельной капиллярной постоянной. Смысл зависимости заключается в следующем: с увеличением длины цепи углеводорода уменьшается растворимость жирной кислоты, и тем самым молекулы ее стремятся перейти из объема в поверхностный слой жидкости. Пример : если масляная кислота смешивается с водой во всех отношениях, то уже валериановая кислота образует только 4 %-ный раствор, из этого следует, что кислоты с более высокими молекулярным весом все менее растворимы в воде. Работа для двух членов гомологического ряда равна:

A n – A n-1 = RT ln(Г / δ с ) т / (Г / δ с ) т-1 = КT ln3 = 640 ккал/моль,

где Г/δс – средняя концентрация в слое. Из этого уравнения видно, что работа адсорбции должна увеличиваться на постоянную величину при удлинении цепи на метиленовую группу. При небольших значениях концентраций, при которых только и соблюдается правило Дюкло-Траубе, все метиленовые группы занимают одинаковое положение по отношению к поверхности, что возможно лишь тогда, когда цепи расположены параллельно поверхности, т. е. лежат на ней. Правило Дюкло-Траубе выполняется при температурах, близких к комнатной, при более высоких температурах поверхностная активность снижается в результате десорбции молекул. Правило соблюдается для водных растворов поверхностно-активных веществ, для растворов поверхностно-активных веществ в неполярных растворителях данное правило действует в обратном направлении: с увеличением длины цепи растворимость поверхностно-активного вещества возрастает, и вещество стремится перейти из поверхностного слоя в раствор. Правило Дюкло-Траубе соблюдается не только для жирных кислот, но и для других гомологических рядов: спиртов (этилового C 2 H 5 OH), аминов (анилина PhNH 2). Правило Дюкло-Траубе позволило изучить влияние на адсорбцию строения и размера молекул поверхностно-активных веществ. Поверхностная активность определяется по уравнению Гиббса:



где ds / dc является поверхностной активностью.

Она берется из практически прямолинейного участка изотермы поверхностного натяжения. Когда концентрация растворенного вещества невелика и ее значение постоянно, она может служить мерой поверхностной активности исследуемого вещества.

1. Приготовьте 0,2, 0,1 0.05, 0,025 и 0,0125 М растворы трех спиртов (или органических кислот) одного гомологического ряда .

2. Определите величины их поверхностных натяжений с помощью прибора и метода Ребиндера, результаты и расчета запишите в таблицу 3.6

3. Постройте на одном графике изотермы поверхностного натяжения всех использованных вами растворов ПАВ одного гомологического ряда.

4. Из графика рассчитайте поверхностные активности Ds/DC всех растворов для всех концентраций из начальных линейных участков.

5. Рассчитайте отношение поверхностных активностей ближайших соседей гомологического ряда.

6. Сделайте вывод о выполнимости правила Дюкло – Траубе.

Таблица 3.6.

Растворы С, Моль/л P =h 2 - h 1 s, дн/см Ds/DC
0 P o = s o =
0,0125
0,025
0,05
0,1
0,2
0,0125
0,025
0,05
0,1
0,2
0,0125
0,025
0,05
0,1
0,2

КОНТРОЛЬНЫЕ ВОПРОСЫ:

Перед выполнением работы:

1. Сформулируйте цель работы.

2. Расскажите порядок измерений для определения поверхностного натяжения методом Ребиндера.

3. Расскажите методику определения поверхностной активности растворов ПАВ и расчета адсорбции по Гиббсу.

4. Объясните порядок работы и расчетов по проверке выполнимости правила Дюкло – Траубе.

К защите работы:

1. Поверхностное натяжение – это …

2. Укажите факторы, влияющие на поверхностное натяжение жидкостей.

3. Есть ли различие в поверхностном натяжении мягкой и жесткой воды, образцы которой находятся при одинаковой температуре? Аргументируйте ответ.

4. Объясните различие терминов «абсорбция» и «адсорбция». Приведите примеры адсорбции и абсорбции.

5. Изобразите графики зависимости адсорбции от концентрации поверхностно – активного вещества при температурах Т 1 и Т 2 , учитывая, что Т 2 < Т 1.

6. Изобразите графики зависимости поверхностного натяжения от концентрации поверхностно – активного вещества при температурах Т 1 и Т 2 , учитывая, что Т 2 > Т 1.

7. Определите площадь, приходящуюся на одну молекулу анилина С 6 Н 5 NH 2 на границе его с воздухом, если предельная адсорбция анилина составляет Г ¥ = 6.0 10 –9 кмоль/м 2 .

8. Приведите пример процесса, в результате которого поверхностное натяжение воды становится равным нулю.

9. Из ряда представленных ниже соединений выберите такие, которые увеличивают поверхностное натяжение воды: NaOH, NH 4 OH, С 6 Н 5 NH 2 , СН 3 -СН 2 -СН 2 -СН 2 -СООН, СН 3 -СН 2 ОNa, KCNS

10. На сколько отличаются поверхностные активности этилового (СН 3 -СН 2 ОН) и бутилового (СН 3 -СН 2 -СН 2 -СН 2 ОН) спиртов одинаковой концентрации (при малых концентрациях).

11. Какое из перечисленных ниже соединений будет иметь наибольшую величину адсорбции при одинаковой концентрации: НСООН, СН 3 -СООН или СН 3 -СН 2 -СООН? Аргументируйте ответ.


ГАЗОВАЯ ХРОМАТОГРАФИЯ

Хроматографический метод разделения смеси веществ заключается в том, что вещества, составляющие смесь, движутся вместе с несорбирующимся газом-носителем вдоль поверхности сорбента (неподвижной фазы), и при этом непрерывно происходят процессы сорб­ции и десорбции этих веществ. Неподвижная фаза помещена в виде насадки в трубку, которая называется хроматографической колонкой через которую должны пройти все впущенные вещества, после чего на выходе из колонки они фиксируются хроматографическим детектором. Движение веществ вдоль колонки происходит только вместе с потоком газа-носителя, в то время, как в сорбированном состоянии они направленно не движутся. Поэтому чем больше среднее "время жизни" молекул индивидуального вещества в сорбированном состоянии, тем меньше их средняя скорость движения вдоль колонки. На рис.3.1 представлена хроматограмма, записанная детектором, для смеси из четырех веществ.

Рис. 4.1 Типичная хроматограмма смеси из четырех веществ.

Стрелкой на рис.4.1 обозначен момент впуска смеси в поток газа-носителя у входа в колонку. Общее время прохождения вещества через колонку (время удерживания ) t u складывается из времени движения с газом-носителем t 0 и суммарного времени нахождения в сорбированном состоянии t R (исправленное время удерживания ):

t u = t o + t R 4.1

t 0 одинаково для всех веществ, так как они перемещаются вдоль колонки вместе с газом-носителем с линейной скоростью его движения u 0 . Так как удерживание веществ в сорбированном состоянии происходит за счет взаимодействия молекул разделяемых веществ с молекулами жидкой пленки (распределительная хроматография) или поверхности твердой фазы (адсорбционная хроматография), то t R зависит от природы неподвижной фазы. Компоненты смеси, различающиеся по энергии взаимодействия с данной неподвижной фазой, будут иметь различные значения t R . Например, энергия указанных взаимодействий для производных углеводородов определяется длиной углеводородной цепи и наличием функциональных групп, следовательно, величина исправленного времени удерживания t R является качественной характеристикой данного вещества при постоянных условиях опыта: температуре и объемной скорости газа-носителя (w ).

Средняя линейная скорость движения i-го компонента смеси вдоль колонки u i = l/t u , где l - длина колонки, описывается основным уравнением:

4.2

u 0 - скорость газа-носителя;

- коэффициент Генри, т.е. коэффициент распределения i-го вещества между неподвижной и газовой фазами;

С a и С - концентрации вещества в этих фазах при равновесии соответственно;

называется отношением фаз и равняется отношению объёма V a неподвижной фазы, в котором проис­ходит сорбция, к объёму подвижной (газовой) фазы в колонке V = wt o ., w – объемная скорость газа-носителя .

В связи с тем, что Г i для различных веществ смеси отличают­ся друг от друга, движение их вдоль колонки происходит с разными средними скоростями, что и приводит к их разделению. Несорбирующиеся вещества, так же как и газ-носитель, проходят всю длину колонки за время t 0 . Таким образом,

, 4.З

т.е. , 4.4

Откуда

, 4.5

Умножая правую и левую части на w , получаем

, 4.6

V R - исправленный удерживаемый объём , зависит только от объёма неподвижной фазы в колонке и коэффициента Генри. Относительный удерживаемый объём двух компонентов 1 и 2, равный не зависит от V a , а только от природы веществ и температуры

, 4.7

Таким образом, относительный удерживаемый объём является наиболее воспроизводимой качественной характеристикой вещества по сравнению с t u , t R и V R .

Особенности строения поверхностною слоя фазы.

Промежуточная фаза, содержащая один или несколько молекулярных слоев

Особенности:

– Внутри объема чистого вещества все силы межмолекулярного взаимодействия уравновешены

– Равнодействующая всех сил, воздействующих на поверхностные молекулы, направлена внутрь жидкости

– Поверхностные явления незначительны, если соотношения между массой тела и поверхностью в пользу массы тела

– Поверхностные явления приобретают значение, когда вещество находится в раздробленном состоянии или в виде тончайшего слоя (пленки)

1 см 3 стрелка 10 -7 , S = 6 000 м 2

1мм крови стрелка 4 - 5 млн эритроцитов; 1л стрелка > 30 млр клеток, S = 1000 м 2

S альвеол = 800 -1000 м 2 ; S капилляров печени = 600 м 2

Поверхностная энергия Гиббса

σ– поверхностное натяжение

Уменьшение энергии Гиббса:

За счет уменьшения площади поверхности (укрупнение частиц)

За счет уменьшения величины поверхностного натяжения (сорбция)

403) поверхностное натяжение

Работа, совершаемая на создание единицы поверхности

Единицы измерения Дж/м 2

Сила, действующая на единицу длины линии, ограничивающей поверхность жидкости и направленную в сторону уменьшения этой поверхности

Единицы измерения Н/м 2

Зависимость поверхностного натяжения от природы веществ, температуры и давления.

Поверхностное натяжение жидкостей уменьшается с ростом температуры и вблизи критической температуры становится равным нулю. С увеличением давления поверхностное натяжение на границе жидкость-газ уменьшается, т к возрастает концентрация молекул в газовой фазе и сила уменьшается. Растворенные в-ва могут повышать, понижать и практически влиять на практическое натяжение жидкостей. Поверхностное натяжение на границе жид-жид зависит от природы соприк фаз. Оно тем больше, чем меньше силы молекулярного взаимодействия между разнородными молекулами.

Способы измерения поверхностного натяжения жидкости.

Метод отрыва кольца от поверхности жидкости

Метод подсчета числа капель определенного объема исследуемой жидкости, вытекающей из капилляра (сталагмометрический)

Метод определения давления, которое необходимо для отрыва пузырька воздуха от капилляра, погруженного в жидкость (метод Ребиндера)

Метод измерения высоты поднятия жидкости в капилляре, стенки которого хорошо ею смачиваются

Распределение растворённого вещества между поверхностным слоем и объёмом фазы.

теоретически можно представить три случая распределения растворенного в-ва между поверхностным слоем и объемом фазы:1) конц растворенного в-ва в пов-ном слое больше, чем в объеме фазы.2) конц растворенного в-ва в пов-ном слое меньше, чем в объеме фаз.3) конц растворенного в-ва в пов-ном слое такая же как в объеме фаз.

Классификация растворённых веществ по их влиянию на поверхностное натяжение жидкости (воды).

классификация.1) растворенное в-во пониж пов натяж р-ля. Спирты, к-ты.2) растворенное в-во незначительно повышает пов натр –ля. Неорг к-ты, основания, соли.3)растворенное в-во практически не изм пов нат р –ля. Сахароза.

Уравнение Гиббса для характеристики адсорбции растворённых веществ. Анализ уравнения.

Г=-(C/RT)*(∆σ/∆C). Г-величина адсорбции на пов-ти р-ра. ∆σ/∆C-пов активность в-ва.Анализ: ∆σ/∆C=0,Г=0. Это ПНВ. ∆σ/∆C>0, Г<0-поверхностно инактивные в-ва. ∆σ/∆C<0, Г>0-ПАВ.

Строение молекул и свойства поверхностно-активных веществ.

св-ва: Ограниченно растворимы

Обладают меньшим поверхностным натяжением, чем жидкости

Резко изменяют поверхностные свойства жидкости

Строение: Дифильное – разные участки молекулы характеризуются различным отношением к растворителю

Гидрофобные свойства: углеводородный радикал

Гидрофильные свойства: OH, NH 2 , SO 3 H

Классификация поверхностно-активных веществ, примеры.

Молекулярные или неионогенные – спирты, желчь, белковые вещества

Ионогенные анионактивные – мыла, сульфокислоты и их соли, карбоновые кислоты

Ионогенные катионактивные – органические азотсодержащие основания и их соли

Влияние природы ПАВ на их поверхностную активность. Правило Дюкло - Траубе.

Удлинение цепи на радикал – CH 2 – увеличивает способность жирных кислот к адсорбции в 3,2 раза

Применимо только для разбавленных растворов и для температур, близких к комнатной, т.к. с повышением температуры увеличивается десорбция

Типичной границей раздела Ж/Ж является граница между водой (В) и маслом (М) – компонентами, не имеющими или имеющими слабое сродство друг к другу. Такая граница довольно явно выражена, хотя и не так резко, как это наблюдается для границы раздела Ж/Г (рис. 1). Возрастание общей поверхности соприкосновения путем диспергирования одной фазы (в виде малых капель) в другой происходит медленно, в то время как обратный переход к начальным фазам – быстро, причем движущей силой обратного процесса является тенденция к сокращению поверхности и уменьшению поверхностной энергии. Дифильные вещества (например, жирные кислоты), добавляемые в систему, распределяются на границе раздела Ж/Ж таким образом, что сродство различных частей молекулы к разным фазам вызывает понижение поверхностной свободной энергии и стабилизирует границу раздела. Сходство между видами распределения молекул на границах раздела Ж/Г и Ж/Ж можно видеть на рис. 4,а,б; основное различие заключается в присутствии молекул ПАВ в масляном слое. Распределение ПАВ, показанное на рис. 4,б, в равной степени относится к эмульсиям масла в воде (М/В) или воды в масле (В/М), так что оба типа эмульсий (или дисперсий) стабилизируются подходящими соответствующими ПАВ.

50. Адсорбция газов на поверхности твердых тел.

51. Адсорбция из растворов. Ионный обмен.

Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Ленгмюра, если в них подставить равновесную концентрацию растворенного вещества в растворе. Однако адсорбция из растворов является значительно более сложным явлением по сравнению с газовой, поскольку одновременно с адсорбцией растворенного вещества часто происходит и адсорбция растворителя.

Адсорбция из водных растворов электролитов происходит, как правило, таким образом, что на твердом адсорбента из раствора адсорбируются преимущественно ионы одного вида. Преимущественная адсорбция из раствора или аниона, или катиона определяется природой адсорбента и ионов. Механизм адсорбции ионов из растворов электролитов может быть различным; выделяют обменную и специфическую адсорбцию ионов.

Ионный обмен – это обратимый процесс эквивалентного обмена ионами м/у раствором электролитов и твердым телом (ионитом). Иониты (ионо-обменники) представляют собой вещества, способные к ионному обмену при контакте с растворами электролитов. По знаку обмениваемых ионов различают катиониты и аниониты. Катионит имеет зактрепленные анионогенные группы и катионы, способные к обмену с окружающей средой. Ионный обмен имеет некоторе сходство с адсорбцией – на поверхности твердого тела происходит концентрирование ионов растворенного вещества.

52. Методы получения и очистки дисперсных систем.

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость.

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

Методы очистки:

    Диализ – очистка золей от примесей с помощью полупроницаемых мембран, омываемых чистым растворителем.

    Электродиализ – диализ, ускоренный за счет электрического поля.

    Ультрафильтрация – очистка путем продавливания дисперсионной среды вместе с низкомалекулярными примесями через полупроницаемую мембрану(ультрафильтр).

53. Малекулярно-кинетические и оптические свойства дисперсных систем: броуновское движение, осмотическое давление, диффузия, седиментационное равновесие, седиментационный анализ, оптические свойства дисперсных систем.

Все молеклярно-кинетические свойства обусловлены самопроизвольны движением молекул и проявляются в броуновском движении, диффузии, осмосе, седиментауионном равновесии.

Броуновским называют непрерывное, хоатичное, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газах, за счет воздействия молекул дисперсионной среды. Теория броуновского движения исходит из представления о взаимодействии случайной силы, которая характеризует удары молекул, силы, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде с определенной скоростью.

Кроме поступательного движения возможно и вращательное, характерно для двухмерных частиц неправильной формы (нитей, волокон, хлопьев). Броуновское движение наиболее ярко выражено у высокодисперсных систем, а его интенсивность зависит от дисперсности.

Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область меньшей концентрацией. Различают следующие виды:

1.)молекулярную

3)коллоидные частицы.

Скорость диффузии в газах наибольшая, а в твердых телах – наименьшая.

Осмотическое давление – это такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. ОД возникает при движении чистогорастворителя в сторону раствора или от более разбавленного раствора в сторону более концентрированного, а следовательно связано с раностью концентрацией растворенного вещества и растворителя. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы оно в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).

Седиментация – это расслоение дисперсных систем под действием силы тяжести с отделением дисперсной фазы в виде осадка. Способность дисперсных систем к седиментации является показателем их седиментационной устойчивости. Процессы расслоения применяют тогда, когда требуется выделить тот или иной компонент из какого-то компонента из какого-то природного или искусственно приготовленного продукта, представляющего собой гетерогенную жидкостную систему. В одних случаях из системы извлекают ценный компонент, в других удаляют нежелательные примеси. В общественном питании процессы расслоения дисперсных систем необходимы, когда требуется получить прозрачные напитки, осветилить бульон, освободить его от частиц мяса.

Поведение луча света, встречающего на пути частицы дисперсной фазы, зависит о соотношения длины волны света и размеров частиц. Если размеры частиц больше длины световой волны, то свет отражается от поверхности частиц под определенным углом. Это явление наблюдается в суспензиях. Если размеры частиц меньше длины световой волны, то свет рассеивается.