Меню Рубрики

Закономерность изучается на примере взаимодействия тиосульфата натрия с серной кислотой. Скорость химических реакций Серная кислота взаимодействует с тиосульфатом натрия

Девиз урока:

“Просто знать – еще не все, знания нужно использовать”.

Цели урока:

Образовательные:

  • расширить представления учащихся о скорости химических реакций;
  • уяснить сущность закона действующих масс (ЗДМ);
  • познакомить учащихся с новыми понятиями (гомогенные и гетерогенные реакции);
  • экспериментально исследовать зависимость скорости химической реакции от концентрации реагирующих веществ.

Развивающие:

  • продолжить формирование экспериментальных навыков учащихся;
  • развивать умение работать в группах и индивидуально;
  • продолжить формирование химического мышления, развития речи, памяти, познавательного интереса к предмету, самостоятельности, умения делать выводы.

Воспитательные:

  • воспитывать умение работать в паре, коммуникативные умения.

Оборудование:

  • Для учителя
  • : фарфоровая чаша, фарфоровый пестик, компьютер, видеопроектор.
  • На рабочем столе ученика
  • : четыре пробирки, подставка для пробирок, часы с секундной стрелкой, черная бумага.

Реактивы: Тиосульфат натрия, серная кислота, вода, алюминий, йод.

Ход урока

1. Вводная часть: сообщение темы урока, настрой учащихся на урок.

Учитель. Кинетика – раздел химии, включающий изучение таких тем, как обратимость химических реакций, тепловой эффект реакций, скорость химических реакций, химическое равновесие. Мы начинаем с темы, название которой вам нужно угадать (тема на доске закрыта; показываю опыт, демонстрирующий зависимость скорости реакции взаимодействия алюминия и кристаллического йода от катализатора).

Вопрос классу. Почему мы начинаем изучение химической кинетики с этой темы?

Тема скорости химических реакций актуальна, так как вокруг нас постоянно происходят разные процессы и скорость их различна. Эти процессы важны и происходят во всех уголках природы, жизнедеятельности людей. (Рисунок 1). Обсуждение среди ребят - сравнение скоростей предложенных реакций. Класс приходит к выводу : все процессы идут с различной скоростью.

Вопросы классу:

1. Что такое скорость реакции? Какая из приведенных формул соответствует скорости химической реакции?

2. В каких единицах измеряют скорость химических реакций?

Важно не только знать скорость химической реакции, но и научиться ею управлять. Зачем? Чтобы ускорить нужную реакцию и замедлить нежелательную. Как сказал Гете: “Просто знать – еще не все, знания нужно использовать”. Посмотрим на экран: на рисунке показана зависимость скорости реакций от определенных внешних факторов (Рисунок 2).

3. Какие факторы влияют на скорость химических реакций?

Ребята называют температуру, катализатор, природу веществ, площадь соприкосновения реагирующих веществ, приводят примеры, в которых наблюдается влияние перечисленных факторов.

2. Основная часть.

Учитель . А какого фактора здесь нет, но влияющего на скорость химических реакций?

Это концентрация реагирующих веществ, она увеличивает скорость реакций в жидкой и газообразной среде. Поэтому на этом уроке экспериментально исследуем влияние концентрации веществ на скорость химических процессов. В 9 классе это был опыт взаимодействия цинка с разбавленной и концентрированной соляной кислотой, а в 10-м классе мы используем реакцию взаимодействия тиосульфата натрия с серной кислотой.

Немного о тиосульфате натрия: химическая формула – Na 2 S 2 O 3 , широко используется в медицине. В фотоделе он известен под названием фиксажной соли. С его помощью с пластинок, бумаги или пленки удаляют неразложившийся бромид серебра. Этот процесс основан на способности тиосульфата натрия образовывать с бромидом серебра соединение, растворимое в воде. Обработанные им пленки и тщательно промытые водой, становятся нечувствительными к дальнейшему действию света.

Смысл химической реакции, лежащей в основе эксперимента: при взаимодействии тиосульфата натрия с серной кислотой наблюдается помутнение - появление чистой серы (признак химической реакции). Эта реакция идет в две стадии.

I стадия: Na 2 S 2 O 3 + Н 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 (тиосерная кислота)

II стадия: H 2 S 2 O 3 = H 2 SO 3 + S v

Сера – нерастворимое в воде вещество, вот почему выпадает осадок. Прежде, чем приступить к эксперименту, посмотрим на таблицу, которая лежит у вас на столах – инструкция проведения эксперимента (Рисунок 3). В ней указана концентрация тиосульфата натрия в каплях (условная концентрация). Изменять ее будем при помощи воды. Концентрация серной кислоты остается без изменений – 1 капля. В соседней графе карандашом запишите время проведения реакции. Что считать временем начала реакции? Момент сливания растворов тиосульфата натрия, воды и серной кислоты считаем нулевым, далее вы отсчитываете время до появления помутнения. Чтобы лучше увидеть образование серы в реакции, используйте черную бумагу.

Проделаем предварительный опыт взаимодействия тиосульфата натрия с серной кислотой и отметим время прохождения реакции (секундная стрелка).

После эксперимента строим график зависимости времени прохождения реакции от концентрации тиосульфата натрия (Рисунок 4) . График строим на полстраницы. Концентрацию откладываем в каплях, время – в секундах. На работу отводится 10 минут. Приступайте.

Посмотрим на результаты эксперимента. На доске ученик заносит свои данные в заранее подготовленную таблицу. Сравниваю с моими данными (опыт провожу накануне). Отмечаю, кто более точно из пар провел эксперимент. Затем ученик рисует график зависимости времени прохождения реакции от концентрации тиосульфата натрия. Класс делает вывод :

скорость химической реакции зависит от концентрации. Чем она больше, тем выше скорость реакции.

Вопросы классу:

1.Почему скорость химической реакции увеличивается, ведь с увеличением концентрации время прохождения реакции уменьшается? (ответ – обратнопропорциональная зависимость скорости и времени - смотри формулу).

2. Как выглядит график зависимости скорости реакции от времени? Ребята строят график (Рисунок 5). Почему?

Зависимость скорости химической реакции от концентрации веществ выражается законом действующих масс (ЗДМ), открытом в XIX веке. Например, для условной реакции

скорость химической реакции равна произведению константы скорости химической реакции k на молярные концентрации реагирующих веществ, возведенных в степень их стехиометрических коэффициентов, если необходимо: ? = k С А С В 2

где С А и С В – молярная концентрация веществ А и В, моль/л.

Физический смыл k : при С А = С В = 1моль/л, то k = v .

Но здесь важно учитывать, в какой среде протекает реакция: в гомогенной или гетерогенной. По ЗДМ в выражение для скорости реакции записывают концентрации веществ в растворенном и газообразном состоянии. Если вещество в твердом состоянии, то его концентрацией пренебрегают (два ученика выходят к доске записать выражение для скорости реакции в гомогенной и гетерогенной среде):

2SO 2 + O 2 = 2SO 3 C + O 2 = CO 2
v = k С O2 С 2 SO2 v = k С O2

То есть, ЗДМ справедлив для гомогенных реакций. А как выглядит выражение для скорости химической реакции для гомогенной и гетерогенной реакции?

Для гомогенной реакции:

Для гетерогенной реакции:

Контроль. Для закрепления темы учащиеся отвечают на вопросы теста (Рисунок 6).

Затем все ответы учащиеся сверяют с экраном, где спроецированы ответы для проверки (Рисунок 7).

Итог урока: углубили знания по теме скорость химических реакций, экспериментально исследовали влияние концентрации веществ на скорость реакции. Я думаю, что вы приобрели новые знания, умения, которые пригодятся вам в будущем. И, наконец, маленькое пожелание на химическом языке.

IV. Рефлексия.

Желаю вам не громкими словами,
Чтоб не взрывались, словно водород, при неудачах
Что за вами следом,
И не были инертны, как неон, в пути,
Что вам пока еще невидан.

Вы будьте терпеливы, как судьба,
Не окисляйтесь, словно группа щелочных металлов,
Трудолюбивыми всегда
На долгие и долгие года.

Пусть будет меньше ингибиторов,
Как бремя, тормозящих путь подчас.
Пусть будет больше индивидуумов,
Талантливых и творческих из вас.

Активны будьте в жизни нашей бешеной,
Словно свободный радикал.
Катализаторами вам в пути обещаны
Любовь, терпение и доброта.

Берем тиосульфат натрия и три кислоты (серную, соляную и ортофосфорную):

Na2S2O3 + H2SO4 = Na2SO4 + SO2 + S + H2O

Na2S2O3 + 2 HCl = 2 NaCl + SO2 + S + H2O

3 Na2S2O3 +2 H3РO4 = 2 Na3РO4 + 3 SO2 + 3 S + 3 H2O

Наливаем в три пробирки по 8 мл раствора тиосульфата натрия. В первую пробирку с раствором тиосульфата натрия наливаем 8 мл серной кислоты, быстро перемешиваем и засекаем время в секундах от начала реакции до помутнения раствора. Чтобы лучшее заметить окончание реакции, с противоположной стороны стенки пробирки приклеиваем полоску черной бумаги. Отчет времени заканчиваем в момент, когда эта полоска не будет просматриваться сквозь помутневший раствор.

Аналогично проводим опыты с другими кислотами. Результаты заносим в таблицу (приложение 1, таблица 1). Скорость реакции определяем как величину, обратно пропорциональную времени: υ = 1/ t. На основании таблицы строим график зависимости скорости реакции от природы реагирующих веществ (приложение 2, график 1).

Вывод: таким образом, природа кислот оказывает влияние на скорость химической реакции. А, так как сила кислот определяется концентрацией ионов водорода, то скорость реакции зависит и от концентрации реагирующих веществ.

Б. Рассмотрим реакцию взаимодействия различных металллов с соляной кислотой. Скорость реакции будем определять по объему выделившегося водорода, который собираем методом вытеснения воды (приложение 3, рисунок 1).

В четыре пробирки поместим по 0, 05 г. металлов: магния, цинка, железа и меди. Поочередно в каждую пробирку (а) наливаем одинаковые объемы соляной кислоты (1:2). Водород, который будет быстро веделяться, поступит в пробирку (б). Отмечаем время, за которое пробирка заполняется водородом. На основании результатов (приложение 4, таблица 2) строим график зависимости от природы реагирующих веществ (приложение 4, график 2).

Вывод: не все металлы могут взаимодействовать с кислотами путем выведения водорода. Металлы, вытесняющие водород из растворов кислот, расположены в ряду Н.Н. Бекетова до водорода, а металлы, которые водород не вытесняют – после водорода (в нашем случае это медь). Но и первая группа металлов различаются по степени активности: магний-цинк-железо, поэтому и интенсивность выделения водорода различна.

Таким образом, скорость химической реакции зависит от природы реагирующих веществ.

2. Зависимость скорости химической реакции от концентрации взаимодействующих веществ.

Цель. Установить графическую зависимость влияния концентрации на скорость реакции.

Для проведения опыта используем те же растворы тиосульфата натрия и серной кислоты, которыми пользовались в первом опыте (А).

В пронумерованные пробирки наливаем указанные количества миллилитров раствора тиосульфата натрия и воды. Вливаем в первую пробирку 8 мл раствора серной кислоты, быстро перемешиваем и замечаем время от начала реакции до помутнения раствора (смотри опыт 1 А). Проводим аналогичные опыты с остальными пробирками. Результаты заносим в таблицу (приложение 6, таблица 3), на основании которых строим график зависимости скорости химической реакции от концентрации реагирующих веществ (приложение 7, график 3). Аналогичный результат мы получили, оставляя постоянной концентрацию тиосульфата натрия, но меняя концентрацию серной кислоты.

Вывод: таким образом, скорость химической реакции зависимт от концентрации реакнгирующих веществ: чем выше концентрация, тем скорость реакции больше.

3. Зависимость скорости химической реакции от температуры.

Цель: проверить, зависит ли скорость химической реакции от температуры.

Опыт проводим с растворами тиосульфата натрия и серной кислоты (смотри опыт 1), дополнительно готовим химический стакан, термометр.

В четыре пробирки наливаем 8 мл раствора тиосульфата натрия, в 4 другие – 8 мл раствора серной кислоты. Все пробирки помещаем в стакан с водой и измеряем температуру воды. Через 5 минут вынимаем две пробирки с растворами тиосульфата натрия и серной кислоты, сливаем их, перемешиваем и замечаем время до помутнения раствора. Стакан с водой и пробирками нагреваем на 10оС и повторяем опыт со следующими двумя пробирками. Проводим такие же опыты с остальными пробирками, повышая каждый раз температуру воды на 10оС. Полученные результаты записываем в таблицу (приложение 8, таблица 4) и строим график зависимости скорости реакции от температуры (приложение 9, график 4).

Вывод: данный эксперимент позволил сделать вывод, что скорость химической реакции увеличивается с повышением температуры на каждые 10оС в 2–4 раза, т.е. доказал справедливость закона Вант-Гоффа.

4. Влияние катализатора на скорость химической реакции.

Цель: проверить, зависит ли скорость химической реакции от катализатора, и обладают ли катализаторы специфичностью.

А. Для проверки специфичности катализатора мы использовали реакцию разложения перекиси водорода: 2Н2О2 = 2Н2О + Н2. Брали 3% раствор, разложение перекиси водорода идет очень слабо, даже опущенная в пробирку тлеющая лучинка не разгорается. В качестве катализаторов мы брали диоксид кремния SiO2, диоксид марганца MnO2, перманганат калия KМnO4, хлорид натрия NaCl. Только при добавлении порошка оксида марганца (IV) произошло бурное выделение кислорода, тлеющая лучинка, опущенная в пробирку, ярко разгорелась.

Таким образом, катализаторы – это вещества, которые ускоряют химическую реакцию, и, чаще всего, для конкретной реакции необходим «свой» катализатор.

5. Кинетика каталитического разложения перекиси водорода.

Цель: выяснить зависимость скорости реакции от концентрации веществ, температуры и катализатора.

Разложение очень слабого раствора пероксида водорода начинается под влиянием катализатора. С течением реакции концентрация перекиси водорода уменьшается, о чем можно судить по количеству выделяющегося кислорода в единицу времени. Опыт проводим в приборе (приложение 10, рисунок 2): в пробирку помещаем 0,1 г порошка двуокиси марганца, присоединяем ее к резиновой трубке, в колбу наливаем 40 мл 3-процентного раствора перекиси водорода, соединяем с помощью резиновой трубки с пробиркой. Заполняем цилиндр (бюретку) водой, опускаем в кристаллизатор, закрепляем в зажиме штатива вертикально, подводим под него газоотводную трубку от колбы Вюрца. Без катализатора выделение кислорода не наблюдаем. После добавления двуокиси марганца каждую минуту в течение 10 минут отмечаем и записываем в таблицу объем выделившегося кислорода (приложение 11, таблица 5). На основании данных строим график зависимости объемов выделившегося кислорода от времени (приложение 12, график 5)

6. Влияние поверхности соприкосновения реагирующих веществ на скорость химической реакции.

Цель. Выяснить, влияет ли поверхность соприкосновения реагирующих веществ на скорость гетерогенной химической реакции.

На весах взвесили одинаковое количество (0,5 г) мела (СаСО3) в виде кусочка и порошка, поместили навески в две пробирки, в которые налили одинаковое количество соляной кислоты (1:2). Наблюдаем выделение углекислого газа, при чем в первой пробирке (мел в виде кусочка) реакция идет менее энергично, чем во второй (мел в виде порошка) (приложение 13, фотографии 1,2): СаСО3 + 2 HCl = CaCl2 + CO2 + H2O

К эфирам серной кислоты относятся диалкилсульфаты (RO 2)SO 2 . Это высококипящие жидкости; низшие растворимы в воде; в присутствии щелочей образуют спирт и соли серной кис­лоты. Низшие диалкилсульфаты - алкилирующие агенты.

Диэтилсульфат (C 2 H 5) 2 SO 4 . Температура плавления -26°С, температура кипения 210°С, растворим в спиртах, нерастворим в воде. Получен взаимодействием серной кислоты с этанолом. Яв­ляется этилирующим агентом в органическом синтезе. Проника­ет через кожу.

Диметилсульфат (CH 3) 2 SO 4 . Температура плавления -26,8°С, температура кипения 188,5°С. Растворим в спиртах, плохо - в воде. Реагирует с аммиаком в отсутствие раствори­теля (со взрывом); сульфирует некоторые ароматические со­единения, например эфиры фенолов. Получают взаимодейст­вием 60%-ного олеума с метанолом при 150°С, Является метилирующим агентом в органическом синтезе. Канцероген, поражает глаза, кожу, органы дыхания.

Тиосульфат натрия Na 2 S 2 O 3

Соль тиосерной кислоты, в которой два атома серы имеют различные степени окисления: +6 и -2. Кристаллическое вещест­во, хорошо растворимо в воде. Выпускается в виде кристаллогид­рата Na 2 S 2 O 3 5Н 2 O, в обиходе называемый гипосульфитом. По­лучают взаимодействием сульфита натрия с серой при кипячении:

Na 2 SO 3 +S=Na 2 S 2 O 3

Как и тиосерная кислота, является сильным восстановителем, Легко окисляется хлором до серной кислоты:

Na 2 S 2 O 3 +4Сl 2 +5Н 2 О=2H 2 SO 4 +2NaCl+6НСl

На этой реакции было основано применение тиосульфата натрия для поглощения хлора (в первых противогазах).

Несколько иначе происходит окисление тиосульфата натрия слабыми окислителями. При этом образуются соли тетратионовой кислоты, например:

2Na 2 S 2 O 3 +I 2 =Na 2 S 4 O 6 +2NaI

Тиосульфат натрия является побочным продуктом в произ­водстве NaHSO 3 , сернистых красителей, при очистке промыш­ленных газов от серы. Применяется для удаления следов хлора после отбеливания тканей, Для извлечения серебра из руд; явля­ется фиксажем в фотографии, реактивом в иодометрии, противоядием при отравлении соединениями мышьяка, ртути, противо­воспалительным средством.

Преподаватель: Кораблёва А.А.

ОТЧЕТ

О ЛАБОРАТОРНОЙ РАБОТЕ

ПО КУРСУ: ОБЩАЯ ХИМИЯ

" СКОРОСТЬ РЕАКЦИИ В РАСТВОРАХ "

ОФ 62 5528 1.04 ЛР

Работу выполнил

студент группы

Санкт – Петербург

Цель работы:

Определить константу скорости, температурный коэффициент, энергию активации реакции взаимодействия тиосульфата натрия с серной кислотой.

В данной лабораторной работе изучается реакция между тиосульфатом натрия (гипосульфитом) Na2S2O3 и серной кислотой H2SO4.

Эта реакция протекает в две стадии:

1) (быстро)

Первая стадия ионного обмена протекает практически мгновенно. Тиосерная кислота неустойчивое соединение, распадающееся с выделением белого осадка серы.

2) (медленно)

О скорости реакции можно судить по появлению опалесценции и дальнейшему помутнению раствора от выпавшей серы.

Суммарная реакция определяется второй стадией процесса и зависит от концентрации H2SO4 , а значит и Na2S2O3 (реакция псевдомолекулярна).

Кинетическое уравнение имеет вид:

Приборы и реактивы:

Термостаты, термометры, мерные цилиндры, пробирки, пробиркодержатели, секундомер, растворы Na2S2O3 и H2SO4 .

Опыт №1:

Влияние тиосульфата на скорость химической реакции.

Зависимость скорости реакции от концентрации тиосульфата натрия.

Обработка результатов опыта:

    Рассчитываем относительную скорость реакции по формуле:

2. Исходя из кинетического уравнения, определяем значение константы скорости реакции:

Р

3. Определяем среднее значение константы для данной комнатной температуры, в данном случае Т = 14 град цельс.

4
. Выразить зависимость скорости реакции от концентрации тиосульфата – графически. (см. рис.№1).

5. Графически определяем константу скорости реакции как тангенс угла наклона прямой ОА к оси абсцисс. Сравниваем графически определенную константу с ее аналитическим значением.

КГР = tg = 0.162 КСР = 0.17 КГР  КСР

Опыт №2:

Влияние температуры на скорость химической реакции.

Температура опыта,

Т, град цельс.

реакции t, с

Относит. скорость

реак. V, 1/с

Конст. скор. реак. К, л/моль*с

Обработка результатов опыта:

1.Рассчитываем относительную скорость реакции при каждой температуре:

Результаты смотреть в вышеприведенной таблице.

2.Исходя из кинетического уравнения определяем значение константы для каждой температуры:

Р
езультаты смотреть в вышеприведенной таблице.

3.Выражаем графически влияние температуры на скорость химической реакции. (см. рис.№2).

4.Исходя из уравнения Ван-Гоффа определяем для каждого температурного интервала значение температурного коэффициента и вычисляем его среднее значение:

К2/К1 = 1 = 2.42

К3/К2 = 2 = 1.97 сред = 2.3

К4/К3 = 3 = 2.49

5
. Исходя из уравнения Аррениуса вычисляем аналитическое значение энергии активации для каждого температурного интервала:

Е
а1 = 61785 Дж/моль Еа2 = 50729 Дж/моль Еа3 =72882 Дж/моль

И вычисляем его среднее значение:

ЕаСРЕД = 61798 Дж/моль

6. Выстраиваем графическую зависимость lgK от 1/Т по вычисленным константам скоростей при разных температурах и определяем энергию активации графическим способом (см. рис. №3).

tg = - Еа / 2.3 R , следовательно

ЕаГР = -2.3 R tg = -2.3 * 8.3 * tg = 19.09* 3230 = 61660 Дж/моль

7. Сравниваем значения энергии активации полученные графическим и аналитическим путем:

ЕаГР = 61660 Дж/моль ЕаСРЕД = 61798 Дж/моль ЕаГР  ЕаГР

Вывод:

При температуре равной const, скорость химической реакции пропорциональна концентрации веществ, участвующих в этой реакции. (см. рис.№1)

С увеличением температуры скорость химической реакции увеличивается

При условии, что концентрация остается неизменной. Это можно объяснить тем, что с ростом температуры атомы веществ переходят в более возбужденное состояние, т. е. они получают дополнительную энергию – энергию активации, необходимую для разрыва химической связи и образования нового вещества.

2.1. Цель работы: определить влияние различных факторов на скорость химической реак­ции, ознакомиться с методами определения средней константы скорости, порядка реакции, энергии активации.

2.2. Объекты и средства исследования: 0.1М растворы тиосульфата натрия и серной кислоты, дистиллированная вода, пробирки, две бюретки, пипетка на 2мл, термостат, секундомер.

2.3. Программа работы

2.3.1. Влияние концентрации на скорость реакции .

В результате реакции между серной кислотой и тиосульфатом натрия образуется сера, выделяющаяся в виде мути. Время от начала реакции до момента помутнения (голубоватой опалесценции) зависит от скорости реакции. Это дает возможность судить о средней скорости реакции.

Реакция идет в три стадии:

1) Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + Н 2 S 2 O 3

2) Н 2 S 2 O 3 = H 2 SO 3 + S¯

3) H 2 SO 3 = H 2 O + SO 2 ­

Суммарное уравнение:

Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + SO 2 ­ + S¯ + H 2 O

Самая медленная, скоростьопределяющая, стадия – вторая, следовательно, скорость всего процесса зависит только от концентрации тиосерной кислоты. Так как тиосерная кислота получается в результате реакции ионного обмена, которая идет практически мгновенно, можно считать, что концентрация тиосерной кислоты равна концентрации тиосульфата натрия и скорость всего процесса зависит от концентрации тиосульфата натрия.

Ход работы .

Приготовить четыре раствора тиосульфата натрия разной концентрации согласно таблице 3. Поочередно к каждому раствору прибавить по 2мл 0,1М раствора серной кислоты и измерить время от момента приливания кислоты до момента появления помутнения. Результаты занести в таблицу 3, учитывая что ΔС есть величина постоянная, равная 4×10 -3 моль/л.

Таблица 3

На основании полученных данных построить график lgV = f (lgC) для определения порядка реакции при температуре T 1 (К). Графики строятся вручную на миллиметровой бумаге в соответствующем масштабе или в программе Microsoft Excel 2007.

Для построения графиков в программе Microsoft Excel 2007 необходимо занести исходные данные в электронную таблицу.

Затем необходимо выделить диапазон ячеек A2:B5 с данными и выбрать в меню Вставка – Диаграммы – Точечная и, выделив на графике полученные точки, выбрать в контекстном меню Добавить линию тренда – Линейная – Показывать уравнение на диаграмме x ) и есть n – порядок реакции. Например, n = 0,9919 ≈ 1

Для определения константы скорости реакции k 1 при комнатной температуре следует построить график зависимости V = f(C) также вручную или с помощью программы Microsoft Excel 2007.

Для построения графиков в программе Microsoft Excel 2007 занести исходные данные в электронную таблицу. Обратите внимание, что для столбца скорость (V ) необходимо выбрать формат ячеек экспоненциальный . В результате получаем график прямолинейной зависимости, в уравнении которой множитель при независимой переменной (x ) является константой скорости реакции.

Например, k = 1,6· 10 -3

2.3.2. Влияние температуры на скорость реакции.

Опыт проводить аналогично предыдущему. Однако растворы тиосульфата натрия и серной кислоты перед смешением предварительно нагреть в термостате в течение 5 минут.

Результаты записать в таблицу 3 (T 2).

По результатам расчетов и измерений построить график V = f(C) и опре­делить константу скорости реакции k 2 при повышенной температуре (Т 2), также используя возможности программы Microsoft Excel 2007. Найти температурный коэффициент скорости реакции:

На основании данных опытов 3.1.1. и 3.1.2. рассчитать энергию ак­тивации реакции Е акт. по формуле:

где R = 8,31 Дж/(моль·К) –универсальная газовая постоянная;

Т 1 и Т 2 -температура, К;

k 1 и k 2 - константы скорости реакции при температурах Т 1 и Т 2 , соответственно, с -1 .

Конец работы -

Эта тема принадлежит разделу:

Неорганическая химия

Министерство образования и науки РФ.. Федеральное государственное бюджетное.. Учреждение высшего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Химическая посуда
1.1. Цель работы: Изучить виды и назначение химической посуды. 1.2. Теоретические сведения Используемую в лабораториях химическую посуду можно разделить на несколь

Мерная химическая посуда и приемы работы с ней
Мерную посуду используют для измерения объемов жидкостей. К ней относятся: мерные колбы, цилиндры, пипетки и бюретки (рис.3). На правила работы с мерной посудой надо обратить

Весы и правила взвешивания
1.1. Цель работы: Познакомиться с приборами для взвешивания. Научиться взвешивать на лабораторных технических весах. 1.2. Теоретические сведения. Для определения м

Запрещается превышать максимальную грузоподъемность весов
Перед взвешиванием проверяют готовность весов к работе: 1. устанавливают их по уровню, 2. выверяют нулевое положение стрелки. Взвешиваемый предмет помещают на левую чашку

Очистка природной воды
3.1. Цель работы: познакомиться с методами очистки природной воды. 3.2. Объекты и средства исследования: два химических стакана на 300-500 мл, коническая воронка, колба Вюр

Очистка дихромата калия перекристаллизацией
4.1. Цель работы: освоить методику очистки веществ перекристаллизацией. 4.2. Объекты и средства исследования: коническая воронка, химические стаканы на 100 мл, мерный цилин

Очистка йода возгонкой
5.1. Цель работы: освоить методику очистки твердых веществ возгонкой. 5.2. Объекты и средства исследования: химический стакан без носика на 200-300 мл, круглодонная колба н

Определение плотности жидкостей, температуры плавления и температуры кипения веществ
6.1. Цель работы: ознакомиться с физическими характеристиками веществ и методами их определения. 6.2. Объекты и средства исследования: жидкие индивидуальные вещества (гексан, гептан, октан

Получение оксида свинца и металлического свинца из его соли
9.1. Цель работы: ознакомление с методами осаждения, фильтрования, высушивания и прокаливания осадков, а также с восстановлением металлов и их оксидов. 9.2. Объекты и средс

Определение молярной массы легко испаряющихся веществ
1.1. Цель работы: освоить методы определения молярных масс легко испаряющихся веществ и расчеты по уравнению Менделеева-Клапейрона. 1.2. Объекты и средства исследования: со

Определение молярной массы углекислого газа
2.1. Цель работы: освоить методы определения молярных масс газообразных веществ, используя уравнение Менделеева-Клапейрона и относительные плотности газов. 2.2. Объекты и средства ис

Определение молярной массы эквивалентов металлов
3.1. Цель работы: ознакомиться с методом определения молярной массы эквивалентов металлов в реакции взаимодействия металлов с разбавленными кислотами.

Свойства гидроксидов
1.1. Цель работы: изучить реакции получения и свойства гидроксидов 1.2. Объекты и средства исследования: 0,5М растворы сульфата меди(II), сульфата алюминия, хлорида хрома(I

Получение и изучение свойств аммино- , гидроксо- , ацидо- и аквакомплексов
1.1. Цель работы: познакомиться с методами получения, химическими свойствами и устойчивостью комплексных соединений. 1.2. Объекты и средства исследования: 0,5М растворы иод

Измерение тепловых эффектов химических реакций
1.1. Цель работы: выполнение калориметрических измерений и термодинамических расчетов, связанных с энергетикой химических реакций. 1.2. Объекты и средства исследования: кал

Влияние изменения концентрации реагирующих веществ на хими­ческое равновесие
3.1. Цель работы: установить, как влияет изменение концентрации реагирующих веществ на химическое равновесие. 3.2. Объекты и средства исследования: 0,1М раствор хлорида железа (III), насыщ

Способы выражения концентрации растворов
Способ выражения концентрации Формула Название и определение Обозначения и единица измерения

Явления, наблюдаемые при растворении
1.1. Цель работы: изучить явления, происходящие при растворении твердых, жидких и газообразных веществ в воде, объяснить наблюдаемые явления с точки зрения гидратной теории растворо

Определение растворимости веществ в воде
2.1. Цель работы: изучить свойства насыщенных и пересыщенных растворов, научиться определять растворимость веществ, изучить зависимость растворимости различных веществ от температур

Образование и растворение осадков
3.1. Цель работы: изучить условия образования и растворения осадков. 3.2. Объекты и средства исследования: 1н растворы нитрата свинца (II), хлорида натрия, хлорида магния, хлорида бария, б

Приготовление и титрование растворов
4.1. Цель работы: ознакомиться с методами приготовления растворов и определения их концентрации, выраженной в различных единицах. Освоить метод титрования растворов. Определить врем

Определение жесткости водопроводной воды
5.1. Цель работы: изучить метод объемного анализа растворов (титрование) при определении временной жесткости водопроводной воды. Научиться производить расчеты по концентрации электр

Определение электропроводности раствора и константы диссоциации слабого электролита
6.1. Цель и задачи работы: изучить кондуктометрический метод анализа. Установить зависимость удельной и эквивалентной электропроводности от концентрации раствора. Изучить закон разбавления Оствальд

Гидролиз солей
7.1. Цель и задачи работы: изучение процессов гидролиза солей различного типа. Установление влияния температуры, разбавления, реакции среды, заряда иона-комплексообразователя на сте