Меню Рубрики

Строение пептидов. Твердофазный синтез Твердофазный синтез кардиоактивного пептида

Твердофазный синтез или твердофазная технология, которую часто называют керамической, являются наиболее распространенными при получении неорганических материалов для различных отраслей науки и промышленности. К ним относятся ядерное топливо, материалы для космической техники, радиоэлектроники, приборостроения, катализаторы, огнеупоры, высокотемпературные сверхпроводники, полупроводники, сегнето- и пьезоэлектрики, магнетики, различные композиты и многие другие .

В основе твердофазного синтеза лежат химические реакции, в которых, по крайней мере, хотя бы один из реагентов находится в виде твердого вещества. Такие реакции называются гетерогенными или твердофазными. Твердофазное взаимодействие, в отличие от реакций в жидкой или газовой среде, складывается из двух фундаментальных процессов: из самой химической реакции и переноса вещества к реакционной зоне.

Твердофазные реакции с участием кристаллических компонентов характеризуются ограниченной подвижностью их атомов или ионов и сложной зависимостью от многих факторов. К ним относятся такие, как химическая структура и связанная с ней реакционная способность реагирующих твердых веществ, природа и концентрация дефектов, состояние поверхности и морфология реакционной зоны, площадь контакта взаимодействующих реагентов, предварительная механохимическая активация и ряд других. Все отмеченное обусловливает сложность механизмов гетерогенных реакций. Изучение гетерогенных реакций основывается на химии твердого тела, химической физике и физической химии поверхности твердых тел, на законах термодинамики и кинетики .

Нередко о механизме твердофазных реакций судят лишь на основании того, что экспериментальные данные о степени взаимодействия как функции времени описываются лучше всего какой - либо конкретной кинетической моделью и соответствующим уравнением кинетики. Такой подход может привести к неверным выводам.

Процессы в твердофазных материалах имеют ряд важных отличий от процессов в жидкостях или газах. Эти отличия связаны, прежде всего, с существенно (на несколько порядков) более низкой скоростью диффузии в твердых телах, что препятствует усреднению концентрации компонентов в системе и, таким образом, приводит к пространственной локализации протекающих процессов. Пространственная локализация в свою очередь приводит к тому, что в наблюдаемую кинетику процессов вносит вклад как удельная скорость процесса (или коэффициент диффузии), так и геометрия реакционной зоны. Такие определяемые геометрическими факторами особенности твердофазных процессов называют топохимическими. Кроме того, поскольку обсуждаемые превращения пространственно локализованы, их скорость может определяться как собственно процессами на границе раздела фаз (реакционный контроль), так и скоростью подвода к этой границе какого-либо из компонентов или отвода продукта(ов) (диффузионный контроль). Эти случаи для простых систем, для которых выполняются модельные предположения, могут быть идентифицированы в эксперименте по виду временной зависимости степени превращения. Еще одна особенность фазовых превращений в твердых телах связана с тем, что образование зародыша новой фазы в твердой матрице вызывает появление в последней упругих напряжений, энергия которых в ряде случаев должна учитываться при рассмотрении термодинамики этих превращений.

Большое число факторов, влияющих на кинетику твердофазных процессов и микроструктуру получаемых при этом материалов, определяет и множественность типов классификации этих процессов. Так, рассматривая устойчивость системы по отношению к флуктуациям различного типа, выделяют гетерогенные (в случае систем, устойчивых к малым по занимаемому объему флуктуациям и неустойчивых к большим) и гомогенные (в случае систем, неустойчивых к малым флуктуациям) процессы. Для гетерогенных процессов в качестве примера можно привести превращения, идущие по механизму образования и роста зародышей, для гомогенных -- некоторые переходы порядок--беспорядок и спинодальный распад твердых растворов.

От гетерогенных и гомогенных процессов необходимо отличать гетерогенное и гомогенное зародышеобразование в случае гетерогенных процессов. Гетерогенным зародышеобразованием называют образование зародышей на дефектах структуры (включая точечные дефекты дислокации и границы раздела фаз); гомогенным зародышеобразованием -- образование зародышей в бездефектном объеме твердой фазы.

Анализируя продукт твердофазного превращения, различают однофазные и многофазные зародыши. В случае многофазных зародышей продуктом процесса оказывается многофазная колония с характерной микроструктурой, определяемой поверхностной энергией границы образующихся фаз; процессы данного типа называют прерывистыми в отличие от непрерывных в случае образования и роста однофазных зародышей.

Еще один способ классификации твердофазных превращений основан на сопоставлении состава исходной фазы и состава продукта реакции. В случае их совпадения говорят о бездиффузионных процессах, а при изменении состава -- о диффузионных. Причем из бездиффузионных полезно выделить кооперативные процессы (например, мартенситное превращение), происходящие путем одновременного незначительного перемещения атомов в большом объеме исходной фазы.

Бездиффузионные фазовые превращения могут различаться по типу изменяющихся в ходе процесса их термодинамических характеристик.

Превращениями первого рода называют процессы, при которых происходит изменение производных химического потенциала по температуре или давлению. Отсюда следует скачкообразное изменение при фазовом переходе таких термодинамических параметров, как энтропия, объем, энтальпия, внутренняя энергия. При превращениях второго рода первые производные химического потенциала по интенсивным параметрам не меняются, но изменяются производные более высоких порядков (начиная со второго). В этих процессах при непрерывных энтропии и объеме системы происходит скачкообразное изменение величин, выражаемых через вторые производные энергии Гиббса: теплоемкости, коэффициента теплового расширения, сжимаемости и т.д.

Твердофазные реакции между двумя фазами (контакты между тремя или более фазами маловероятны, а соответствующие процессы могут быть представлены как комбинации нескольких двухфазных реакций) относятся к диффузионным процессам и могут быть как гетерогенными, так и гомогенными, как с гетерогенным, так и с гомогенным зародышеобразованием. Гомогенные процессы и процессы с гомогенным зародышеобразованием при таких реакциях возможны, например, в случае образования метастабильного твердого раствора с последующим его распадом (так называемые внутренние реакции). Примером таких процессов может быть внутреннее окисление.

Условием термодинамического равновесия при твердофазном превращении, как и при любом другом химическом превращении, является равенство химических потенциалов компонентов в исходных веществах и продуктах реакции. При взаимодействии двух твердых фаз указанное равенство химических потенциалов может реализовываться разными способами: 1) перераспределение компонентов в исходных фазах с образованием твердых растворов; 2) образование новых фаз с другой кристаллической структурой (что, собственно, обычно и называют твердофазной реакцией), причем поскольку химический потенциал компонента в различных фазах многофазной системы не зависит от количества каждой фазы, равновесие может быть достигнуто только при полном превращении исходных фаз . Наиболее достоверные сведения о механизме твердофазных реакций получают при комплексном использовании, позволяющим одновременно наблюдать несколько параметров реагирующей системы, включая фазовый состав, тепловые эффекты, изменение массы и другое.

Термодинамическая теория твердофазных реакций была предложена Вагнером, а в дальнейшем развита Шмальцридом на примере реакций присоединения.

К настоящему времени нет единой классификации большого разнообразия гетерогенных реакций. Связано это с трудностью выбора критерия в качестве основы такой универсальной классификации. По химическим критериям реакции подразделяются на реакции окисления, восстановления, разложения, соединения, обмена и т. д. Наряду с указанным критерием широко используется в качестве основного критерий физического состояния реагентов :

Характерной чертой всех гетерогенных реакций является существование и локализация на границе раздела фаз реакционной зоны. Реакционная зона, как правило, малой толщины разделяет две области пространства, занятые веществами различного состава и с различными свойствами. Причины образования реакционной зоны обычно делятся на две группы: относительная медленность процессов диффузии и химические причины. Последняя группа обусловлена большой реакционной способностью находящихся на поверхности твердого реагента или на поверхности раздела двух имеющихся фаз атомов или молекул. Известно, что поверхность твердого или жидкого вещества обладает свойствами, отличными от объемных свойств компактного образца. Это делает свойства поверхности раздела фаз специфичными. Именно здесь происходит существенная перестройка кристаллической упаковки, снижаются напряжения между двумя кристаллическими решетками, происходит изменение химического состава.

Так как массоперенос осуществляется путем диффузии, а диффузионная подвижность частиц твердого тела зависит от дефектности его структуры, можно ожидать существенного влияния дефектов на механизм и кинетику твердофазных реакций. Эта стадия предшествует химической стадии превращения реагирующих веществ на межфазной поверхности раздела. Таким образом, кинетика гетерогенных реакций определяется как характером протекания самой химической реакции, так и способом доставки вещества в реакционную зону. В соответствии с отмеченным скорость реакций будет лимитироваться химической стадией (химическая кинетика) или диффузией (диффузионная кинетика). Такое явление и наблюдается в действительности.

По Вагнеру диффузия и, следовательно, реакция в твердых телах осуществляется главным образом за счет подвижности ионов и электронов, обусловленной неравновесным состоянием решетки. Различные ионы решетки перемещаются в ней с разной скоростью. В частности, подвижность анионов в подавляющем большинстве случаев ничтожно мала по сравнению с подвижностью катионов. Поэтому диффузия и соответственно реакция в твердых телах осуществляется за счет перемещения катионов. При этом диффузия разноименных катионов может идти в одном направлении или навстречу друг другу. При разнозарядных катионах электронейтральность системы сохраняется за счет движения электронов. За счет различия в скоростях перемещения разнозарядных катионов в системе возникает электрический потенциал. В результате скорость перемещения более подвижных ионов уменьшается и, наоборот, для менее подвижных? увеличивается. Таким образом, возникающий электрический потенциал регулирует скорости диффузии ионов. Последняя и определяемая ею скорость всего процесса твердофазного превращения может быть рассчитана на основе электронной проводимости и чисел переноса. Очевидно, что направленная диффузия ионов возможна лишь в электрическом поле или при наличии градиента концентрации в системе.

При синтезе веществ в твердом состоянии часто оказывается необходимым контролировать не только химический (элементный и фазовый) состав получаемого продукта, но и его микроструктурную организацию. Это связано с сильной зависимостью как химических (например, активности в твердофазных реакциях), так и многих физических (магнитных, электрических, оптических и т.д.) свойств от характеристик структурной организации твердого тела на различных иерархических уровнях. К первому из таких уровней можно отнести элементный состав твердого тела и способ взаимного расположения атомов элементов в пространстве - кристаллическую структуру (или особенности ближайшего координационного окружения атомов в аморфных твердых телах), а также состав и концентрацию точечных дефектов. В качестве следующего уровня структуры твердого тела может быть рассмотрено распределение в кристалле протяженных дефектов, определяющее размеры областей, в которых (с поправкой на существование точечных дефектов) наблюдается трансляционная симметрия в расположении атомов. Такие области могут считаться совершенными микрокристаллами и называются областями когерентного рассеяния. Говоря об областях когерентного рассеяния, необходимо помнить, что в общем случае они не эквивалентны образующим твердофазный материал компактным частицам, которые могут содержать значительное количество протяженных дефектов, а следовательно, и областей когерентного рассеяния. Совпадение областей когерентного рассеяния с частицами (которые в этом случае называют однодоменными) обычно наблюдается лишь для достаточно малых (менее 100 нм) размеров последних. Последующие структурные уровни могут быть связаны с формой и распределением по размерам образующих порошкообразный или керамический материал частиц, их агрегацией, агрегацией первичных агрегатов и т.д.

Различные области применения твердофазных материалов предъявляют разные, часто противоположные требования к перечисленным выше структурным характеристикам и, следовательно, требуют применения разных синтетических методов . Поэтому правильнее говорить о методах синтеза не твердофазных веществ, а твердофазных материалов и в каждом случае выбирать метод синтеза с учетом области последующего применения получаемого продукта.

В общем случае методы синтеза твердофазных материалов могут быть классифицированы по удалению от термодинамически равновесных условий протекания используемых химических процессов. В соответствии с общими закономерностями, при условиях, отвечающих состоянию, максимально удаленному от равновесного, наблюдается значительное превышение скорости зародышеобразования над скоростью роста образовавшихся зародышей, что, очевидно, приводит к получению максимально дисперсного продукта. В случае же проведения процесса вблизи термодинамического равновесия рост уже образовавшихся зародышей происходит быстрее образования новых, что в свою очередь позволяет получать крупнокристаллические (в предельном случае -- монокристаллические) материалы. Скоростью роста кристаллов в значительной степени определяется и концентрация в них протяженных (неравновесных) дефектов.

«Биолог. журн. Армении, 1 (65), 2013 ТВЕРДОФАЗНЫЙ СИНТЕЗ КАРДИОАКТИВНОГО ПЕПТИДА, ВЫДЕЛЕННОГО ИЗ ПРЕДСЕРДИЙ СВИНЬИ Г.С. ЧАИЛЯН Институт биохимии им. Бунятяна НАН РА...»

Экспериментальные и теоретические статьи

Experimental and theoretical articles

Биолог. журн. Армении, 1 (65), 2013

ТВЕРДОФАЗНЫЙ СИНТЕЗ КАРДИОАКТИВНОГО ПЕПТИДА,

ВЫДЕЛЕННОГО ИЗ ПРЕДСЕРДИЙ СВИНЬИ

Г.С. ЧАИЛЯН

Институт биохимии им. Бунятяна НАН РА

[email protected].

В целях продолжения исследований акад. Галояна, нами был проведен ряд экспериментов по выделению, очистке и определению биологической направленности нововыделенных соединений пептидной природы из предсердий и ушковых частей сердца свиньи. Для проведения биотестов требовалось получить препаративные количества исследуемых образцов. Для этого мы воспользовались методикой твердофазного синтеза пептидов с ее дальнейшей модификацией. Чистота и идентичность синтезированных препаратов проверялись методами высокоэффективной жидкостной хроматографии и масс-спектрального анализа.

Твердофазный синтез – fmoc-аминокислоты – ВЭЖХ – фенилизотиоцианат – масс-спектральный анализ:

fmoc- – – For further studies established by Galoyan, a series of experiments on the isolation, purification and determination of biological direction of peptides isolated from pigs atria were carried out. For fulfilling the biotests the preparative amount of samples was required. A modified method of solid phase peptide synthesis was used. The synthesized peptide purity and identity were defined by HPLC and mass-spectral analysis.



Solid phase synthesis – high performance liquid chromatography – mass spectrometry – fmoc-aminoacids – cardiopeptides – atria В течение многих лет в Институте биохимии НАН РА в отделе биохимии нейрогормонов акад. Галояном с сотрудниками изучались пути регуляции и механизмы действия гипоталамических нейрогормонов на различные процессы в организме .

Подтверждение идеи о взаимосвязанном, взаимообусловленном, цельном функционировании такой системы, как гипоталамус – гипофиз – надпочечники, явилось переломным моментом в эндокринологии. Пополнение же этой концепТВЕРДОФАЗНЫЙ СИНТЕЗ КАРДИОАКТИВНОГО ПЕПТИДА, ВЫДЕЛЕННОГО ИЗ ПРЕДСЕРДИЙ СВИНЬИ туальной триады, выдвинутой Галояном относительно взаимодействия гипоталамус - гипофиз

– сердце, является огромным научным достижением. Впоследствии была обнаружена новая ткань-мишень-сердце, показана способность этого органа управлять функционированием специфических пептидов, а также существование механизма обратной связи между гипоталамусом и сердцем посредством этих пептидов.

Обнаружение кардиоактивных соединений – нейрогормона К, С, G и ряд других в гипоталамусе различных животных послужило началом работ не только по изучению молекулярных механизмов действия этих нейрогормонов, но и по поиску подобных соединений в сердце . Основанием для всестороннего исследования биохимических и физико-химических свойств кардиоактивных начал послужили данные о наличии 2-х кардиоактивных соединений в сердечной мышце . Было установлено участие нейрогормона “С” в регуляции гликолитических процессов и уровня циклических нуклеотидов посредством ингибирования ФДЭ цАМР, цАМФ- зависимой протеинкиназы и т.д. Было показано, что это соединение является низкомолекулярным и относится к гликопептидам .

Нами в лаборатории аналитической хроматографии и пептидного синтеза была проведена работа по выделению и очистке соединений пептидной природы из предсердий и ушковых зон сердца свиньи . При разделении пептидных фракций препаративной ВЭЖХ, нами были выделены и очищены до гомогенного состояния 20 соединений пептидной природы . Для определения биологической направленности все препараты были тестированы на изменения компонентов ЭКГ у крыс . Результаты экспериментов показали, что 7 соединений имеют разносторонние факторы влияния на определенные компоненты ЭКГ.

Пептид №7 показал наибольшую активность на изменение амплитуды компонента R, длительности комплекса QRS, амплитуды S и других параметров.

Для изучения биологических механизмов действия данного препарата стало необходимо наличие большого количества исследуемого образца. Ввиду того, что процесс выделения и очистки биопрепаратов является крайне неэффективным, трудоемким, времязатратным и не может обеспечивать хорошей воспроизводимости, стало крайне актуальным проведение химического синтеза данного препарата. Анализируя мировую литературу в области химического синтеза пептидов, мы пришли к выводу, что наиболее оптимальным для нас является методика твердофазного синтеза с использованием fmoc-защищенных аминокислот. Открытый в 1984 году твердофазный синтез пептидов (Solid phase peptide synthesis) имеет много преимуществ по сравнению с обычным синтезом с точки зрения эффективности, а также удобной обработки и очистки .

С использованием несколько различных методик: гидролиза данного препарата, модифицирования аминокислот фенилизотиоцианатом, нами был получен аминокислотный состав пептида №7. Используя данные масс-спектрального и ЯМР-анализов, эдмоновской деградации, нам удалось получить не только аминокислотный состав, но также аминокислотную последовательность пептида №7.

Phe – Val – Pro – Ala – Met – Gly – Ile – Arg – Pro Эффективный процесс твердофазного синтеза во многом зависит от правильного выбора различных условий его проведения, таких как выбор смолы, растворителя и кинетики проведения синтеза . Эти переменные влияют на степень набухания смолы и связи ее с аминокислотами, количеству связывающих сайтов, что в конечном итоге влияет на синтез пептида в целом. Мы приспособи-ли процесс твердофазного синтеза по отношению к нашим исследуемым пептидам с учетом особенностей их аминокислотной последовательности.

Г.С. ЧАИЛЯН Материал и методика. Все использованные реактивы, растворители, смолы фирмы “Advanced Chem Techcompany”. Мы использовали fmoc-группы для защиты N-концов аминокислот в процессе синтеза и диметилформамид (DMF) как растворитель в процессе всего синтеза. В качестве подложки мы использовали кислотолабильную 2-хлортритильную смолу. Снятие защитных fmoc-групп проводилось с помощью раствора пиперидина в DMF.

Очень важным в процессе синтеза является посадка первой аминокислоты на смолу. Два грамма 2Cl-Trt-й смолы насыпали в шприц объемом 10 мл. Набирали DMF в шприц, давали набухнуть смоле в течение 15 мин. После этого DMF вымывался. Затем в шприц набирался раствор первой аминокислоты (fmoc-Pro) и активатор реакции (DIPEA) в соотношении 1СМОЛА/1,2FMOC-PRO/4DIPEA. Реакция посадки первой аминокислоты шла 3 ч. Очень важным условием проведения синтеза является отсутствие свободных линкеров после посадки первой аминокислоты, поэтому смолу после связывания с первой аминокислотой обрабатывали смесью метилена, DIPEA (диизопроилэтиламин) и DMF в соотношении 80DMF/15MEOH/5DIPEA для блокирования возможно оставшихся свободных концов. После этого промывали смолу DMF 5 раз по 5 мин. Затем проводили деблокирование аминокислот 30%-ным раствором пипередина в DMF 8 раз по 5 мин. После этого смолу промывали DMF 5 раз по 5 мин. Этот цикл повторялся в течение всего синтеза пептида. После каждого шага присоединения и деблокирования аминокислот контроль хода реакции проверялся Кайзер тестом, что представляет собой реакцию нингидрина со свободной аминогруппой с образованием характерного темно-синего цвета. Благодаря этому тесту, стал возможным пошаговый контроль реакций посадки и деблокирования аминокислот.

Очистка и контроль синтезированного пептида № 7 были проведены на 2-х компонентной препаративной системе ВЭЖХ фирмы Waters (USA). Для ввода образца использовался инжектор Rheodyne с объемом петли 500 мкл. Детектирование проводилось в диапазоне 190-360 нм. Мы использовали колонку “Symmetry Si-100 C18” (4,6х250 mm) для обращенно-фазовой ВЭЖХ. Скорость потока была 50 мл/мин. Использовалась градиентная система элюента H2O/ACN/TFA (98/2/0.1) / (0.100.0.1). Время анализа 15 мин. Рехроматографию проводили на аналитической системе Knauer HPLC. Использовалась колонка XbridgeC18 (2.6x150 mm). Детектирование проводили при 214 нм.

Для подтверждения полученных данных синтезированный препарат был подвергнут массспектральному анализу на CSU "Analitycal spectrometry”.

Результаты и обсуждение. Данные, полученные на хроматограмме, позволяют утверждать, что чистота синтезированного пептида №7 после очистки составляет более 99,6% (pис.1).

–  –  –

Нами был проведен сравнительный хроматографический анализ нативного пептида №7 на колонке X-bridgeC18 в тех же условиях, что и его синтезированный аналог. Результаты сравнения представлены (pис. 2).

ТВЕРДОФАЗНЫЙ СИНТЕЗ КАРДИОАКТИВНОГО ПЕПТИДА, ВЫДЕЛЕННОГО ИЗ ПРЕДСЕРДИЙ СВИНЬИ

–  –  –

Рис. 4. Спектрограммы синтезированного (А) и нативного (В) препаратов.

Г.С. ЧАИЛЯН Как видно из сравнения хроматограмм, синтезированный аналог и нативный пептид № 7 одинаковы по массе и времени выхода, что говорит об идентичности их структур и аминокислотной последовательности. Таким образом, используя метод твердофазного синтеза пептидов и учитывая особенности строения исследуемого пептида, нам удалось получить гомогенный и идентичный нативному пептид, состоящий из 9 аминокислот. В дальнейшем, имея достаточное количество препарата, мы планируем провести ряд биотестов по выявлению не только путей регуляции сердечной деятельности этим пептидом, но также механизмов действия на другие органы и системы.

ЛИТЕРАТУРА

Попова Т.В., Срапионян Р.М., Галоян А.А. Обнаружение и идентификация в сердце быка новых 1.

кардиоактивных белков. Вопр. мед. химии, 37, 2, с. 56-58, 1991.

Срапионян Р.М., Саакян С.А., Саакян Ф.М., Галоян А.А. Выделение и характеристика 2.

кардиоактивного триптического фрагмента белка-носителя нейрогормона “С”. Нейрохимия, 2, 3, с. 263-271, 1983.

Срапионян, Р.М. Мисирян, С.С. Разделение низкомолекулярных коронароактивных соединений 3.

сердечной мышцы сочетанием методов гелевой фильтрации и электрофореза в полиакриламидном геле. Биолог. журн. Армении, 27, 10, 102-104, 1974.

4. Срапионян, Р.М. Попова, Т.В. Галоян, А.А. Распределение кардиоактивных белковых комплексов в сердце различных животных. Биолог. журн. Армении, 40, 7, 588-590, 1987.

5. Galoyan A. The Regulation of Neurosecretion and Hormones of Hypothalamo-Neurohypophyseal System, USSR, 1963.

6. Galoyan A.A. Biochemistry of Novel Cardioactive Hormones and Immunomodulators of the Functional System Neurosecretory Hypothalamus, Endocrine Heart. Nauka Publ. p. 240, 1997.

7. Galoyan A.A., Besedovsky H. Handbook of Neurochemistry and molecular Neurobiology, 3rd edition, Springer Publishers, 500 p., 2008.

8. Galoyan A.A., Brain Neurosecretorycytokins: Immune Response and Neuronal Survival, VIII, 188 p., 2004.

9. Galoyan A.A., Srapionyan R.M. The purification of coronarodilatory proteins isolated from the hypothalamus. Dokl. Akad. NaukArm.SSR, 42, 4, p. 210-213, 1966.

10. March J.,Smith M. March’s advanced organic chemistry. Published by John Wiley & Sons, Inc., Hoboken, New Jersey, p. 133, 2007.

–  –  –

Похожие работы:

« СООБЩЕСТВ ИЗДАТЕЛЬСТВО «НАУКА» Москва 1979 УДК 581.55:56.017 Плот н и к о·в В. В. Эволюция структуры растительных сообществ. М.: Наука, с. 1979, 276 На современной мет...»

«Известия Музейного Фонда им. А.А.Браунера №2 Том I 2004 Известия Музейного Фонда им. А. А. Браунера Том I № 2 2004 Научный журнал Основан в декабре 2003 г. Выходит 4 раза в год Свидетельство о государственной регистрации ОД № 913 от 13.12.2003 г. Учредитель и изда...»

Министерство образования и науки Российской Федерации

ФГАОУ ВПО «Уральский федеральный университет имени первого президента России Б. Н. Ельцина»

Кафедра технологии органического синтеза

Реферат на тему: « Принципы и методы твердофазного синтеза. Синтез пептидов »

Выполнила студент гр. Х-300803

Шайхутдинова А.И.

Проверила Берсенева В.С.

Екатеринбург 2013

1. Введение…………………………………………………………………………3

2. Что такое пептиды?..........................................................................................4

2.1. Строение пептидов……………………………………………………….5

2.2. Синтез пептидов………………………………………………………….7

3. Твердофазный синтез пептидов……………………………………………10

3.1. Метод Мерринфилда……………………………………………………10

3.2. Твердая подложка……………………………………………………….14

3.3. Выбор подложки………………………………………………………...14

3.4. Линкеры………………………………………………………………….16

4. Первый синтез природного гормона – окситоцина……………………….22

5. Синтез инсулина в клетке…………………………………………………..30

6. Заключение…………………………………………………………………..34

7. Литература…………………………………………………………………...35

Введение

В органической химии нет ни одной реакции, обеспечивающей на практике количественные выходы целевых продуктов в любом случае. Единственное исключение составляет, по-видимому, полное сжигание органических веществ в кислороде при высокой температуре до СО 2 и Н 2 О. Поэтому очистка целевого продукта является сложной и трудоемкой задачей. Например, 100%-ная очистка продуктов пептидного синтеза является трудноразрешимой проблемой. Действительно, первый полный синтез пептида, гормона окситоцина (1953 г), содержащего всего 8 аминокислотных остатков, рассматривался как выдающееся достижение, принесшее его автору, В. дю Виньо, Нобелевскую премию 1955 г. Однако уже в следующие двадцать лет синтезы полипептидов подобной сложности превратились в рутину, так что в настоящее время синтез полипептидов, состоящих из 100 и более аминокислотных остатков, уже не рассматривается как непреодолимо трудная задача.

Цель работы: разобрать и объяснить: «Что вызвало столь драматические изменения в области синтеза полипептидов?»

Что же такое пептиды?

Пептиды- природные или синтетические соединения, молекулы которых построены из остатков альфа-аминокислот, соединенных между собой пептидными (амидными) связями C(O) NH. Могут содержать в молекуле также неаминокислотную компоненту (напр., остаток углевода ). По числу аминокислотных остатков, входящих в молекулы пептидов, различают дипептиды, трипептиды, тетрапептиды и т.д. Пептиды, содержащие до 10 аминокислотных остатков, называются олигопептидами, содержащие более 10 аминокислотных остатков полипептидами Природные полипептиды с молекулярной массой более 6 тыс. называются белками .

Впервые пептиды были выделены из ферментативных гидролизатов белков. Термин "пептиды" предложен Э. Фишером. Первый синтетический пептид получил T. Курциус в 1881г. Э. Фишер к 1905 разработал первый общий метод синтеза пептидов и синтезировал ряд олигопептидов различного строения. Существующий вклад в развитие химии пептидов внесли ученики Э. Фишера Э. Абдергальден, Г. Лейке и M. Бергман. В 1932 г. M Бергман и Л. Зервас использовали в синтезе пептидов бензилоксикарбонильную группу (карбобензоксигруппу) для защиты альфа-аминогрупп аминокислот, что ознаменовало новый этап в развитии синтеза пептидов. Полученные N-защищенные аминокислоты (N-карбобензоксиаминокислоты) широко использовали для получения различных пептидов, которые успешно применяли для изучения ряда ключевых проблем химии и биохимии этих веществ, например, для исследования субстратной специфичности протеолитических ферментов. С применением N-карбобензоксиаминокислот были впервые синтезированы природные пептиды(глутатион, карнозин и др.). Важное достижение в этой области разработанный в начале 50-х гг. P. Воганом и др. синтез пептидов методом смешанных ангидридов.

В 1953 В. Дю Виньо синтезировал первый пептидный гормон -окситоцин. На основе разработанной P. Меррифилдом в 1963 концепции твердофазного пептидного синтеза были созданы автоматические синтезаторы пептидов. Получили интенсивное развитие методы контролируемого ферментативного синтеза пептидов. Использование новых методов позволило осуществить синтез гормона инсулина и др.

Успехи синтетической химии пептидов были подготовлены достижениями в области разработки таких методов разделения, очистки и анализа пептидов, как ионообменная хроматография, электрофорез на различных носителях, гель-фильтрация, высокоэффективная жидкостная хроматография (ВЭЖХ), иммуно-химический анализ и др. Получили большое развитие также методы анализа концевых групп и методы ступенчатого расщепления пептидов. Были, в частности, созданы автоматические аминокислотные анализаторы и автоматические приборы для определения первичной структуры пептидов-так называемых секвенаторы.

Комбинаторный синтез можно проводить не только в растворе (жидкофазный синтез), но и на поверхности твёрдой химически инертной фазы. В этом случае первое исходное вещество химически „пришивают“ к функциональным группам на поверхности полимерного носителя (чаще всего используют сложноэфирную или амидную связь) и обрабатывают раствором второго исходного вещества, которое берётся в значительном избытке, чтобы реакция прошла до конца. В такой форме реакции есть определённое удобство, поскольку облегчается техника выделения продуктов: полимер (обычно в виде гранул) просто отфильтровывают, тщательно промывают от остатков второго реагента и химически отщепляют от него целевое соединение.

В органической химии нет ни одной реакции, обеспечивающей на практике количественные выходы целевых продуктов в любом случае. Единственное исключение составляет, по-видимому, полное сжигание органических веществ в кислороде при высокой температуре до СО 2 и Н 2 О. Поэтому очистка целевого продукта всегда является непременной, а часто самой сложной и трудоемкой задачей. Особенно сложной задачей является выделение продуктов пептидного синтеза, например, разделение сложной смеси полипептидов. Поэтому именно в пептидном синтезе наибольшее распространение получил метод синтеза на твердой полимерной подложке, разработанный в начале 60-х годов ХХ века Р.Б.Мерифилдом.

Полимерный носитель в методе Меррифилда – это гранулированный сшитый полистирол, содержащий хлорметильные группы в бензольных ядрах, которые являются линкерами, связывающими подложку с первым аминокислотным остатком полипептида. Эти группы превращают полимер в функциональный аналог бензилхлорида и сообщают ему способность легко образовывать сложноэфирные связи при реакции с карбоксилат-анионами. Конденсация такой смолы с N-защищенными аминокислотами ведет к образованию соответствующих бензиловых эфиров. Удаление N-защиты из дает С-защищенное производное первой аминокислоты, ковалентно связанное с полимером. Аминоацилирование освобожденной аминогруппы N-защищенным производным второй аминокислоты с последующим удалением N-защиты приводит к аналогичному производному дипептида также привязанному к полимеру:

Такой двухстадийный цикл (удаление защиты - аминоацилирование) может быть, в принципе, повторен столько раз, сколько требуется для наращивания полипептидной цепи заданной длины.

Дальнейшее развитие идей Мерифильда было направлено, прежде всего, на поиск и создание новых полимерных материалов для подложек, разработку методов разделения продуктов и создания автоматизированных установок для всего цикла полипептидного синтеза


Эффективность метода Мерифилда была продемонстрирована успешным синтезом целого ряда природных полипептидов, в частности инсулина. Особенно наглядно его преимущества были продемонстрированы на примере синтеза фермента рибонуклеазы. Так, например, ценой значительных усилий, в течение нескольких лет, Хиршмен с 22 сотрудниками выполнили синтез фермента рибонуклеазы (124 аминокислотных остатка) с помощью традиционных жидкофазных методов. Почти одновременно тот же белок был получен путем автоматизированного твердофазного синтеза. Во втором случае синтез, включающий всего 11 931 различных операций, в том числе и 369 химических реакций, был выполнен двумя участниками (Гатте и Меррифильдом) всего за несколько месяцев.

Идеи Меррифильда послужили основой для создания различных методов комбинаторного синтеза библиотек полипептидов различного строения.

Так в 1982 году была предложена оригинальная стратегия многостадийного параллельного синтеза пептидов на твёрдой фазе известная как „сплит-метод“ (split - расщепление, разделение) или метод “смешай и раздели” (рис. 3). Суть ее состоит в следующем. Допустим, что из трёх аминокислот (А, В и С) нужно получить все возможные комбинации трипептидов. Для этого гранулы твёрдого полимерного носителя (Р) разделяют на три равные порции и обрабатывают их раствором одной из аминокислот. При этом все аминокислоты химически связываются с поверхностью полимера одной из своих функциональных групп. Полученные полимеры трёх сортов тщательно смешивают, и смесь опять разделяют на три части. Затем каждую часть, содержащую все три аминокислоты в одинаковых количествах, вновь обрабатывают одной из тех же трёх аминокислот и получают девять дипептидов (три смеси по три продукта). Ещё одно смешение, разделение на три равные части и обработка аминокислотами дают искомые 27 трипептидов (три смеси по девять продуктов) всего через девять стадий, тогда как получение их по отдельности потребовало бы синтеза из 27×3 = 81 стадий.

ТВЕРДОФАЗНЫЙ СИНТЕЗ,

методич. подход к синтезу олиго(поли)меров с использованием твердого нерастворимого носителя (Н.), представляющего собой орг. или неорг. полимер. Т. е. основан на том, что первое звено будущего олигомера ковалентно закрепляется на "якорной" группе Н., наращивание цепи проводится стандартно защищенными мономерами по обычным схемам, используемым для синтеза в р-рах. На заключит. этапе синтезир. олигомер отщепляется от Н. и очищается соответствующими методами. Т. с. применяют в осн. для получения полипептидов, олиго-нуклеотидов и олигосахаридов.

При синтезе полипептидов в качестве Н. наиб. широко используют сополимер стирола и 1-2% дивинилбензола, модифицированный введением диметоксибензилхлоридной якорной группы для присоединения первой (с защищенной группой NH 2) по С-концу, напр.:

После удаления N-защитной группы наращивание полипептидной цепи проводят стандартными методами пептидного синтеза в р-ре (см. Пептиды). В качестве конденсирующих агентов наиб. часто используют или предварительно превращают аминокислоты в активир. эфиры.

При синтезе олигонуклеотидов в качестве Н. используют макропористые стекла или . Якорной группой служит карбоксильная группа, отделенная от пов-сти Н. спец. "ножкой", напр.:


В-пуриновое или пиримидиковое основание

На первой стадии нуклеозид присоединяют к носителю по 3"-гидроксильной группе дезоксирибозы, у к-рой гидрок-сильная группа в положении 5" защищена диметокситри-тильной группой (СН 3 ОС 6 Н 4) 2 (С 6 Н 5)С (DMTr); кол-во последней после ее отщепления легко измеряется спектро-фотометрически, что служит количеств. характеристикой загрузки носителя и позволяет оценить выходы на последующих стадиях наращивания олигонуклеотидной цепи. После удаления группы DMTr сборку цепи осуществляют с помощью фосфитамидов (ф-ла I; M. Kapoзерс, 1980) или фосфонатов (гидрофосфонатов) (II; Р. Стремберг, 1986):


Для осуществления Т. с. необходимы высокие выходы (на уровне 96-99%) на каждой стадии р-ции, а также эффективные методы очистки и выделения синтезир. соединений.

Использование твердой фазы позволяет существенно упростить и ускорить проведение каждой стадии наращивания цепи олигомера, поскольку отделение избытка компонентов, конденсирующих агентов и побочных продуктов, находящихся в р-ре, достигается фильтрованием реакц. смеси и отмывкой Н. подходящим набором р-рите-лей. Т. обр., процесс сборки цепи олигомера распадается на ряд стандартных операций: деблокирование растущего конца цепи, дозирование очередного защищенного мономера и конденсирующего агента, подача этой смеси на колонку с Н. в течение рассчитанного времени и отмывка Н. подходящим р-рителем. Цикл наращивания мономерного звена м. б. автоматизирован.

В основе автоматич. пром. синтезаторов лежит общая принципиальная схема (см. рис.). Многочисл. модели синтезаторов различаются конструкцией колонок и их кол-вом, способом подачи реагентов и р-рителей и др. Управление и программирование осуществляют с помощью встроенного или вынесенного компьютера.


Принципиальная схема устройства автоматич. пром. синтезаторов (электрич. линия управления обозначена пунктиром): 1 -линия подачи мономеров (М 1 , М n ) и конденсирующего агента (КА); 2-линия подачи реагентов (напр., окислителей, ацилирующих агентов, к-т и др.) и р-рителей (P 1 , Р n ); 3 - переключающие клапаны; 4-колонка с носителем, снабженная распределит. клапаном; 5-фотометрич. ячейка; 6-измеритель; 7-блок управления и программирования; 8-дисплей.

Потенциальные возможности Т. е. были продемонстрированы синтезом А (Р. Меррифилд, 1969) и гормона роста человека (Д. Ямаширо, 1970) длиной 124 и 183 аминокислоты соответственно. Однако в связи с небольшой, но постоянной рацемизацией, происходящей при образовании пептидной связи, синтезир. обладают низкой биол. активностью, поэтому автоматич. синтезаторы используются гл. обр. для получения коротких полипептидов (10-30 звеньев), в т. ч. для препаративного синтеза белка (1г).

Т. е. предложен и введен в практику Меррифилдом (1962) для синтеза полипептидов, а затем распространен на синтез олигонуклеотидов (Р. Летзингер, 1964) и олигосахаридов (А. Патчорник, 1973).

Существует др. важный аспект использования Н. для проведения мн. орг. р-ций ( , галогенирование, и т. д.). В этом случае модифицир. Н. выступает в роли полимерного реагента или катализатора, а все превращения субстрата происходят в р-ре. Напр., р-цию фосфатов ROP(O)(OH) 2 со спиртами проводят с использованием в качестве конденсирующего агента сшитого полистирола, модифицированного сульфохлоридной группой.

Лит.: Химия полипептидов, пер. с англ., М., 1977; Polyner-supported reactions in organic synthesis, ed. by P. Hodge, D.C. Sherrington, Chichester, 1980; Oligonucleotide synthesis, A practical approach. Wash., 1984. B.K. Потапов.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "ТВЕРДОФАЗНЫЙ СИНТЕЗ" в других словарях:

    твердофазный синтез - Комбинаторная химическая техника синтеза разнообразных составов, которая использует твердые поддержки, чтобы отделить составы в течение синтеза, тем самым, упрощая идентификацию получающихся составов }