Меню Рубрики

Сольватная (гидратная) теория растворения. Теория растворов Две основные теории растворов

Раствор – это однородная смесь переменного состава, состоящая из растворяемого вещества, растворителя и продуктов их взаимодействия.

Раствор, в котором данное вещество при определённой температуре больше не растворяется, называется насыщенным , а раствор, в котором это вещество ещё может растворяться, – ненасыщенным .

Кристаллогидраты

Если растворитель – вода, то продукты присоединения молекул воды к частицам растворяемого вещества называются гидратами , а процесс их образования – гидратацией .

Гидраты – очень неустойчивые соединения, и при выпаривании воды из раствора они легко разрушаются. Однако некоторые гидраты могут удерживать воду даже в твёрдом кристаллическом состоянии.

Такие вещества называют кристаллогидратами . Кристаллогидратами является большинство природных минералов. Много веществ получают в чистом виде в форме кристаллогидратов.

Химическая теория была предложена Д.И. Менделеевым. Согласно представлениям Д.И. Менделеева между молекулами растворяемого вещества и растворителем происходит химическое взаимодействие с образованием неустойчивых, превращающихся друг в друга соединений растворенного вещества с растворителем – сольватов.

Сольваты – это неустойчивые соединения переменного состава. Если растворителем является вода, их называют гидратами . Сольваты (гидраты) образуются за счет ион-дипольного, донорно-акцепторного взаимодействий, образования водородных связей и т.д.

9.Концентрация растворов. Растворимость, насыщенные и ненасыщенные растворы.

Концентрация – это относительное количество растворенного вещества в растворе.

Молярная концентрация (С)– это отношение количества растворенного вещества v (в молях) к объему раствора V в литрах.

Единица молярной концентрации – моль/л. Зная число молей вещества в 1 л раствора, легко отмерить нужное количество молей для реакции с помощью подходящей мерной посуды.

Массовая доля растворенного вещества – это отношение массы растворенного вещества m 1 к общей массе раствора m, выраженное в процентах.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора. Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту.

Раствори́мость - способность вещества образовывать с другими веществами однородные системы - растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.

Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ растворителя.

Ненасыщенный раствор - раствор, в котором концентрация растворенного вещества меньше, чем в насыщенном растворе, и в котором при данных условиях можно растворить ещё некоторое его количество.

Насыщенный раствор - раствор, в котором растворённое вещество при данных условиях достигло максимальной концентрации и больше не растворяется. Осадок данного вещества находится в равновесном состоянии с веществом в растворе.

Химическая, или сольватная, теория растворов была предложена в 1887 г. Д.И. Менделеевым, который установил, что в реальном растворе присутствуют не только индивидуальные компоненты, но и продукты их взаимодействия. Исследования водных растворов серной кислоты и этилового спирта, проведенные Д.И. Менделеевым, легли в основу теории, суть которой заключается в том, что между частицами растворенного вещества и молекулами растворителя происходят взаимодействия, в результате которых образуются нестойкие соединения переменного состава, называемые сольватами или гидратами , если растворителем является вода. Главную роль в образовании сольватов играют непрочные межмолекулярные силы, в частности, водородная связь.

В этой связи следует принять следующую трактовку понятия «раствор»:

Раствором называется гомогенная система переменного состава, состоящая из двух и более компонентов и продуктов их взаимодействия.

Из данного определения следует, что растворы занимают промежуточное положение между химическими соединениями и смесями. С одной стороны, растворы однородны, что позволяет рассматривать их как химические соединения. С другой стороны, в растворах нет строгого стехиометрического соотношения между компонентами. Кроме того, растворы можно разделить на составные части (например, при упаривании раствора NaCl можно выделить соль в индивидуальном виде).

Основные способы выражения концентрации растворов

Количественный состав раствора чаще всего оценивают при помощи понятия концентрации , под которым понимают содержание растворенного вещества (в определенных единицах) в единице массы (объема) раствора (растворителя). Основными способами выражения концентрации растворов являются следующие:

1. Массовая доля вещества (x )  это отношение массы данного компонента x, содержащегося в системе, к общей массе этой системы:

Единицей количества вещества является моль, т. е. то количество вещества, которое содержит столько реальных или условных частиц, сколько атомов содержится в 0,012 кг изотопа С 12 . При использовании моля как единицы количества вещества следует знать, какие частицы имеются в виду: молекулы, атомы, электроны или другие. Молярная масса М(х)  это отношение массы к количеству вещества (г/моль):

3. Молярная концентрация эквивалента С(x )  это отношение количества эквивалента вещества n(x) к объему раствора V р-ра:

Химический эквивалент – это реальная или условная частица вещества, которая может замещать, присоединять или высвобождать 1 ион водорода в кислотно-основных или ионообменных реакциях.

Так же, как молекула, атом или ион, эквивалент безразмерен.

Масса моля эквивалентов называется молярной массой эквивалента М(x ). Величина называется фактором эквивалентности . Она показывает, какая доля реальной частицы вещества соответствует эквиваленту. Для правильного определения эквивалента вещества надо исходить из конкретной реакции, в которой это вещество участвует, например, в реакции взаимодействия Н 3 РО 4 с NaOH может происходить замещение одного, двух или трех протонов:

1. H 3 PO 4 + NaOH  NaH 2 PO 4 + H 2 O;

2. H 3 PO 4 + 2NaOH  Na 2 HPO 4 + 2H 2 O;

3. H 3 PO 4 + 3NaOH  Na 3 PO 4 + 3H 2 O.

В соответствии с определением эквивалента, в 1-й реакции замещается один протон, следовательно, молярная масса эквивалента вещества равна молярной массе, т. е. z  l и . В данном случае:

Во 2-й реакции происходит замещение двух протонов, следовательно, молярная масса эквивалента составит половину молярной массы Н 3 РО 4 , т. e. z  2, а
. Здесь:

В 3-й реакции происходит замещение трех протонов и молярная масса эквивалента составит третью часть молярной массы Н 3 РО 4 , т.е. z  3, a
. Соответственно:

В реакциях обмена, где непосредственно не участвуют протоны, эквиваленты могут быть определены косвенным путем, введением вспомогательных реакций, анализ результатов которых позволяет вывести правило, что z для всех реакций равен суммарному заряду обменивающихся ионов в молекуле вещества, участвующего в конкретной химической реакции.

1. AlCl 3 + 3AgNO 3 = Al(NO 3) 3 + 3AgCl.

Для AlCl 3 обменивается 1 ион Al 3+ с зарядом +3, следовательно, z = 13 = 3. Таким образом:

Можно также сказать, что обмениваются 3 иона хлора с зарядом 1. Тогда z = 31 = 3 и

Для AgNO 3 z = 11 = 1 (обменивается 1 ион Ag + с зарядом +1 или обменивается 1 ион NO 3  с зарядом 1).

2. Al 2 (SO 4) 3 + 3BaCl 2 = 3BaSO 4  + 2AlCl 3 .

Для Al 2 (SO 4) 3 z = 23 = 6 (обменивается 2 иона Al 3+ с зарядом +3 или 3 иона SO 4 2  с зарядом 2). Следовательно,

Итак, запись С(H 2 SO 4) = 0,02 моль/л означает, что имеется раствор, в 1 л которого содержится 0,02 моль эквивалента H 2 SO 4 , а молярная масса эквивалента H 2 SO 4 составляет при этом молярной массыH 2 SO 4 , т. е. 1 л раствора содержит
H 2 SO 4 .

При факторе эквивалентности молярная концентрация эквивалента равна молярной концентрации раствора.

4. Титр Т(x ) – это отношение массы вещества к объему раствора (в мл):

6. Мольная доля N(x ) – это отношение количества вещества данного компонента,содержащегося всистеме, к общему количеству веществ системы:

Выражается в долях единицы или в %.

7. Коэффициентом растворимости вещества Р(x ) называют максимальную массу вещества, выраженную в г, которая может раствориться в 100 г растворителя.

Раствор - это гомогенная система, содержащая не менее двух веществ. Существуют растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке, - растворенным веществом.

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы.

Газообразный раствор - это прежде всего воздух, а также другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жидкостей и твердых тел с жидкостями.

Твердые растворы представлены сплавами, а также стеклами.

На практике большое значение имеют жидкие растворы (смеси жидкостей, где растворитель - жидкость). Из неорганических веществ самый распространенный растворитель - вода. Из органических веществ в качестве растворителей применяют метанол, этанол, диэтило- вый эфир, ацетон, бензол, четыреххлористый углерод и другие.

Под действием хаотически движущихся частиц растворителя частицы (ионы или молекулы) растворяемого вещества переходят в раствор, образуя благодаря беспорядочному движению частиц качественно новую однородную (гомогенную ) систему. Растворимость в разных растворителях - характеристическое свойство вещества. Одни вещества могут смешиваться друг с другом в любых соотношениях (вода и спирт), другие имеют ограниченную растворимость (хлорид натрия и вода).

Рассмотрим растворение твердого вещества в жидкости. В рамках молекулярно-кинетической теории при внесении твердой поваренной соли в растворитель (например, в воду) ионы Na + и С1“, находящиеся на поверхности, взаимодействуя с растворителем (с молекулами и другими частицами растворителя), могут отрываться и переходить в раствор. После удаления поверхностного слоя процесс распространяется на следующие слои твердого вещества. Так постепенно частицы переходят из кристалла в раствор. Разрушение ионных кристаллов NaCl в воде, состоящей из полярных молекул, показано на рисунке 6.1.

Рис. 6.1. Разрушение кристаллической решетки NaCl в воде. а - атака молекул растворителя; б - ионы в растворе

Частицы, перешедшие в раствор, распределяются благодаря диффузии по всему объему растворителя. В то же время по мере увеличения концентрации частицы (ионы, молекулы), находящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося твердого вещества могут задерживаться на ней, т. е. растворение всегда сопровождается обратным процессом - кристаллизацией. Может наступить такой момент, когда одновременно из раствора выделяется столько же частиц (ионов, молекул), сколько их переходит в раствор, т. е. наступает равновесие.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т. е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно дополнительно растворить некоторое количество данного вещества, - ненасыщенным.

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Концентрация вещества в насыщенном растворе - величина постоянная при данных условиях (температура, растворитель), она характеризует растворимость вещества ; подробнее см. § 6.4.

Раствор, в котором содержание растворенного вещества больше, чем в насыщенном растворе при данных условиях, называют пересыщенным. Это неустойчивые, неравновесные системы, которые самопроизвольно переходят в равновесное состояние, и при выделении в твердом виде избытка растворенного вещества раствор становится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с высоким содержанием растворенного вещества. Необходимо подчеркнуть, что понятия разбавленный и концентрированный растворы относительные и основаны на качественной оценке соотношения количеств растворенного вещества и растворителя в растворе (иногда раствор называют крепким и слабым в том же смысле). Можно сказать, что эти определения возникли из практической необходимости. Так, говорят, что раствор серной кислоты H 2 S0 4 концентрированный (крепкий) или разбавленный (слабый), но, при какой концентрации раствор серной кислоты нужно считать концентрированным, а при какой разбавленным, точно не определено.

При сравнении растворимости различных веществ видно, что в случае малорастворимых веществ насыщенные растворы разбавленные, в случае хорошо растворимых веществ их ненасыщенные растворы могут быть довольно концентрированными.

Например, при 20 °С в 100 г воды растворяется 0,00013 г карбоната кальция СаС0 3 . Раствор СаС0 3 при этих условиях насыщенный, но весьма разбавленный (его концентрация очень мала). Но вот пример. Раствор 30 г поваренной соли в 100 г воды при 20 °С ненасыщенный, но концентрированный (растворимость NaCl при 20 °С 35,8 г в 100 г воды).

В заключение отметим, что здесь и далее (кроме § 6.8) речь пойдет об истинных растворах. Частицы, из которых состоят такие растворы, настолько малы, что их нельзя увидеть; это атомы, молекулы или ионы, их диаметр обычно не превышает 5 нм (5 10~ 9 м).

И последнее о классификации растворов. В зависимости от того, электронейтральные или заряженные частицы присутствуют в растворе, растворы могут быть молекулярными (это растворы неэлектролитов) и ионными {растворы электролитов). Характерное свойство растворов электролитов - электропроводность (они проводят электрический ток).

Лекция 1.

«ПОНЯТИЕ «РАСТВОР». ХИМИЧЕСКАЯ ТЕОРИЯ РАСТВОРОВ»

Растворы имеют важное значение в жизни и практической деятельности человека. Растворами являются все важнейшие физиологические жидкости (кровь, лимфа и т.д.). Организм – сложная химическая система, и подавляющее большинство химических реакций в организме происходит в водных растворах. Именно по этой причине человеческий организм на 70 % состоит из воды, а сильное обезвоживание организма наступает быстро и является очень опасным состоянием.

Многие технологические процессы, например получение соды или азотной кислоты, выделение и очистка редких металлов, отбеливание и окрашивание тканей, протекают в растворах.

Чтобы понять механизм многих химических реакций, необходимо изучить процессы, протекающие в растворах.

Понятие «раствор». Виды растворов

Раствор – твердая, жидкая или газообразная гомогенная система , состоящая из двух или более компонентов.

Гомогенная система состоит из одной фазы.

Фаза - часть системы, отделенная от других ее частей поверхностью раздела, при переходе через которую свойства (плотность, теплопроводность, электропроводность, твердость и т.д.) изменяются скачкообразно. Фаза может быть твердой, жидкой, газообразной.

Наиболее важным видом растворов являются жидкие растворы, но в широком смысле растворы также бывают еще твердые (сплав латунь: медь, цинк; сталь: железо, углерод) и газообразные (воздух: смесь азота, кислорода, углекислого газа и различных примесей).

Раствор содержит не менее двух компонентов, из которых один является растворителем , а другие – растворенными веществами .

Растворитель – это компонент раствора, находящийся в том же агрегатном состоянии, что и раствор. Растворителя в растворе по массе всегда больше, чем остальных компонентов. Растворенное вещество находится в растворе в виде атомов, молекул или ионов .

От растворов отличаются:

Суспензия – это система, состоящая из мелких твердых частиц, взвешенных в жидкости (тальк в воде)

Эмульсия – это система, в которой одна жидкость раздроблена в другой, не растворяющей ее жидкости (т.е. мелкие капли жидкости, находящихся в другой жидкости: например,бензин в воде).

Аэрозоль – газ со взвешенными в нем твердыми или жидкими частицами (туман: воздух и капли жидкости)

Суспензии, эмульсии и аэрозоли состоят из нескольких фаз, они не гомогенны и являются дисперсными системами . Суспезии, эмульсии и аэрозоли – не растворы!

Химическая теория растворов.

Растворитель химически взаимодействует с растворенным веществом.

Химическая теория растворов создана Д.И. Менделеевым в конце ХIХв. на основании следующих экспериментальных фактов:


1) Растворение любого вещества сопровождается поглощением или выделением теплоты. То есть растворение является экзотермической или эндотермической реакцией.

Экзотермический процесс – процесс, сопровождающийся выделением тепла во внешнюю среду (Q>0).

Эндотермический процесс – процесс, сопровождающийся поглощением тепла из внешней среды (Q<0).

(пример : растворение CuSO 4 – экзотермический процесс, NH 4 Cl – эндотермический). Объяснение : чтобы молекулы растворителя могли оторвать частицы растворенного вещества друг от друга, необходимо затратить энергию (это эндотермическая составляющая процесса растворения), при взаимодействии частиц растворяемого вещества с молекулами растворителя энергия выделяется (экзотермический процесс). В результате тепловой эффект растворения определяется более сильной составляющей. (Пример : при растворении 1моль вещества в воде на разрыв его молекул потребовалось 250 кДж, а при взаимодействии образовавшихся ионов с молекулами растворителя выделилось 450 кДж. Каков суммарный тепловой эффект растворения? Ответ: 450-250=200 кДж, экзотермический эффект, т.к. экзотермическая составляющая больше эндотермической).

2) Смешение компонентов раствора с определенным объемом не дает суммы объемов (пример : 50 мл этилового спирта +50 мл воды при смешении дают 95 мл раствора)

Объяснение : благодаря взаимодействию молекул растворенного вещества и растворителя (притяжению, химическому связыванию и т.п.) объем «экономится».

Внимание ! Масса раствора строго равна сумме масс растворителя и растворенных веществ.

3) При растворении некоторых бесцветных веществ образуются окрашенные растворы. (пример : CuSO 4 – бесцветный, дает синий раствор).

Объяснение : при растворении некоторых бесцветных солей образуются окрашенные кристаллогидраты.

Вывод: Растворение – это сложный физико-химический процесс, при котором происходит взаимодействие (электростатическое, донорно-акцепторное, образование водородной связи) между частицами растворителя и растворенных веществ.

Процесс взаимодействия растворителя с растворенным веществом называется сольватацией . Продукты этого взаимодействия – сольваты . Для водных растворов применяются термины гидратация и гидраты .

Иногда при выпаривании воды кристаллы растворенного вещества оставляют часть молекул воды в своей кристаллической решетке. Такие кристаллы называются кристаллогидратами. Записываются так: CuSO 4 *5Н 2 О. То есть, каждая молекула сульфата меди CuSO 4 удерживает около себя 5 молекул воды, встраивая их в свою кристаллическую решетку.

Закон электронейтральности

При диссоциации молекул, число положительных и отрицательных ионов определяется стехиометрическими индексами в формуле молекулы. Электролиты, в которых ионы обладают одинаковым зарядом катиона и аниона, например, 1-1-электролит KCl или 2-2-электролит , распадаются на два иона - называются симметричные или симметричными. Электролиты, в которых ионы обладают неодинаковым зарядом катиона и аниона, например, 1-2-электролит или 3-1–электролит , называются несимметричными . Для любого типа электролита в элементарном объеме сумма зарядов анионов и катионов всегда одинакова (закон электронейтральности) :

Где число частиц в растворе.

Степень диссоциации, изотонический коэффициент

Количественно диссоциация характеризуется степенью диссоциации

Величина может изменяться от нуля (диссоциация отсутствует) до единицы (в растворе присутствуют только ионы). У сильных электролитов , у слабых - у неэлектролитов

Изотонический коэффициент Вант-Гоффа i характеризует во сколько раз изменилось общее число частиц в растворе в результате диссоциации:

где числитель - общее число вещества в растворе: распавшихся на ионы и оставшихся непродиссоциированными а знаменатель - число молекул, введенных в раствор.

Для сильных электролитов изотонический коэффициент теоретически должен быть равен числу ионов, на которые распадается молекула при диссоциации: при (например, для и v =2, для и v =3, для v =4 и т.д.). Однако обычно экспериментальные величины i <v . Причиной этого является электростатическое взаимодействие между ионами, величина которого характеризуется осмотическим коэффициентом



g I(g<1): i =v g. Для неэлектролитов i =1.

Закон разбавления Оствальда

Степень диссоциации зависит от концентрации слабого электролита в

растворе.

Рассмотрим в качестве примера реакцию:

Если исходная концентрация уксусной кислоты была равна c, то концентрация образовавшихся в результате диссоциации ионов

,

а концентрация непродиссоциировавшей уксусной кислоты

Тогда, с учетом уравнения (32.2):

(32.3)

а если то и,

Выражение (32.3) носит название закона разбавления Оствальда. Как видно из этого уравнения, при разведении степень диссоциации возрастает, достигая в области бесконечных разбавлений значения, близкого к единице, т. е уменьшается вероятность ассоциации ионов в молекулу из-за уменьшения степени вероятности их столкновения.

Константа гидролиза

Если растворитель диссоциирует на ионы, то их взаимодействие с ионами растворенного вещества приводит к возникновению новых ионных равновесий. Обменные реакции между растворенным веществом и растворителем называется сольволизом (для водных растворов - гидролизом).

Гидролизу подвергаются все вещества, образованные с участием слабых электролитов. Например, при гидролизе соли слабой кислоты и сильного основания устанавливается равновесие:

(щелочная реакция)

(кислая реакция)

Наиболее сильно подвержены гидролизу соли, образованные слабой кислотой и слабым основанием

Равновесие реакции гидролиза может быть количественно охарактеризовано константой гидролиза . Например, константа равновесия реакции гидролиза ацетата натрия имеет вид:

Поскольку то и Это произведение носит название константы гидролиза . Умножая числитель и знаменатель дроби на активность ионов водорода и произведя перестановки, получим



Как следует из приведенного выражения, константа гидролиза обратно пропорциональна константе диссоциации слабого электролита, участвующего в образовании соли (если в образовании соли участвуют два слабых электролита, то обратно пропорциональна произведению их констант диссоциации).

Степень гидролиза является величиной аналогичной степени диссоциации.

Уравнение, связывающую константу гидролиза со степенью гидролиза, по форме аналогично уравнению (32.3):

где h - число частиц введенных в раствор.

При повышении температуры степень диссоциации воды сильно увеличивается, тогда как у большинства других электролитов она изменяется незначительно. Вследствие этого степень гидролиза водных растворов при повышении температуры увеличивается.

Буферные растворы

В природе и практической деятельности многие реакции протекают при определенном значении pH, которое должно быть постоянным и не зависеть от разведения, изменения состава раствора, добавления кислоты или щелочи и т.д. Такими свойствами обладают буферные растворы, содержащие слабую кислоту и соль, образованную этой кислотой и сильным основанием (например, ацетатный буфер ), или слабое основание и соль, образованную сильной кислотой и этим основанием (например, аммиачный буфер ). Эти растворы обладают определенными свойствами, которые проиллюстрируем на примере ацетатного буфера.

Присутствие ацетата натрия (сильного электролита), который полностью диссоциирован, настолько увеличивает концентрацию ионов CH COO , что, в соответствии с принципом Ле-Шателье, диссоциация уксусной кислоты полностью подавляется:

В результате можно считать, что в буферном растворе активность анионов равна активности анионов соли , а активность кислоты равна ее концентрации . Подставляя эти величины в выражение константы диссоциации, логарифмируя и вводя обозначение получимследующие формулы:

Эти формулы показывают, что pH буферного раствора зависит от константы диссоциации кислоты и соотношения аналитических концентраций соли и кислоты. При разбавлении буферного раствора это соотношение не меняется, а незначительное повышение pH обусловлено изменением коэффициента активности соли. Добавление сильной кислоты тоже сравнительно слабо отражается на изменении pH. При добавлении сильной кислоты к буферному раствору идет реакция с образованием недиссоциированной уксусной кислоты:

А при добавлении сильного основания- реакция нейтрализации:

Ионы в первом случае, и ионы во втором, связываются в малодиссоциированные молекулы ( и ), в результате чего в pH раствора практически не изменяется.

Способность буферных растворов противостоять изменению pH количественно выражается величиной, называемой буферной емкостью. Буферная емкость - это количество кислоты или щелочи которое нужно добавить к раство­ру, чтобы изменить его pH на единицу.

Числа переноса

Каждый вид ионов переносит определенное количество электричества, зависящее от заряда и концентрации ионов, а также скорости их движения в электрическом поле. Отношение количества электричества перенесенного ионами вида, к общему количеству электричества перенесенному всеми ионами, находящимися в растворе, называют числом переноса ионов:

В соответствии с этим определением сумма чисел переноса всех видов ионов в растворе равна единице.

Для симметричного электролита KA , диссоциирующего на два вида ионов и , количество электричества, перенесенное катионами и анионами, составит соответственно:

На степень гидратации ионов, величины их абсолютной скорости и числа переноса влияют концентрация раствора и температура. С ростом концентрации примерно до 0,1 моль/л для большинства электролитов числа переноса ионов изменяются незначительно; в области более высоких концентраций это изменение заметнее. При повышении температуры размеры гидратных оболочек слабо гидратированных ионов уменьшаются менее резко, чем сильно гидрати-рованных (а иногда даже увеличиваются). В результате величины абсолютной подвижности катионов и анионов сближаются, и их числа переноса стремятся к 0,5.


Диэлектрическая проницаемость - величина, показывающая, во сколько раз сила взаимодействия двух зарядов в изучаемой среде меньше, чем в вакууме.

Зарядом иона z называют отношение заряда иона, выраженного в кулонах, к заряду электрона Кл; заряд иона, в кулонах, соответственно, равен произведению ez.

Далее во всех случаях, где это особо не оговаривается, с целью упрощения мы будем говорить о коэффициенте активности и активности электролитов, понимая, что речь идет о среднем коэффициенте активности и средней активности. В дальнейшем пренебрегается и различием между тремя способами выражения активности (коэффициента активности), что вполне допустимо для разбавленных растворов.

Используют также определение – радиус (толщина) ионной атмосферы, дебаевский радиус.

Обозначение единицы электрической проводимости сименс, как и всех других единиц, происходящих от имен собственных, пишется с прописной буквы (См). Это обозначение нельзя путать с обозначением единицы измерения длины – сантиметр (см).

Физическая и химическая теории растворов.

Растворы являются сложными системами, в которых имеют место различные виды взаимодействия между частицами (Ван-дер-Ваальсовы, электростатические и т.д.).

Существуют две точки зрения на природу растворения и растворов. Согласно физической точке зрения, растворение является чисто физическим процессом (разрушение кристаллической решетки при растворении твердых тел). Растворы при этом рассматриваются как молекулярные смеси нескольких веществ, не взаимодействующих химически. Противоположные представления были развиты Д. И. Менделеевым, который считал растворение химическим процессом, а растворы рассматривал как непрочные соединения компонентов раствора, находящихся в состоянии частичной диссоциации и отличающихся от обычных соединений переменным составом.

В настоящее время используются представления обеих теорий и доминирующая роль физической или химической компонент, в процессе растворения, определяется свойствами растворителя и растворенного вещества (системы).