Меню Рубрики

Решение уравнения с разделяющимися переменными. Дифференциальные уравнения первого порядка

Дифференциальное уравнение с разделенными переменными записывается в виде: (1). В этом уравнении одно слагаемое зависит только от x, а другое – от y. Проинтегрировав почленно это уравнение, получаем:
– его общий интеграл.

Пример : найти общий интеграл уравнения:
.

Решение: данное уравнение – дифференциальное уравнение с разделенными переменными. Поэтому
или
Обозначим
. Тогда
– общий интеграл дифференциального уравнения.

Уравнение с разделяющимися переменными имеет вид (2). Уравнение (2)легко сводиться к уравнению (1) путем почленного деления его на
. Получаем:

– общий интеграл.

Пример: Решить уравнение .

Решение: преобразуем левую часть уравнения: . Делим обе части уравнения на


Решением является выражение:
т.е.

Однородные дифференциальные уравнения. Уравнения Бернулли. Линейные дифференциальные уравнения первого порядка.

Уравнение вида называетсяоднородным , если
и
– однородные функции одного порядка (измерения). Функция
называется однородной функцией первого порядка (измерения), если при умножении каждого ее аргумента на произвольный множительвся функция умножиться на, т.е.
=
.

Однородное уравнение может быть приведено к виду
. С помощью подстановки
(
)однородное уравнение приводится к уравнению с разделяющимися переменными по отношению к новой функции.

Дифференциальное уравнение первого порядка называется линейным , если его можно записать в виде
.

Метод Бернулли

Решение уравнения
ищется в виде произведения двух других функций, т.е. с помощью подстановки
(
).

Пример: проинтегрировать уравнение
.

Полагаем
. Тогда , т.е. . Сначала решаем уравнение
=0:


.

Теперь решаем уравнение
т.е.


. Итак, общее решение данного уравнения есть
т.е.

Уравнение Я. Бернулли

Уравнение вида , где
называетсяуравнением Бернулли. Данное уравнение решается с помощью метода Бернулли.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородным линейным дифференциальным уравнением второго порядка называется уравнение вида (1) , гдеипостоянны.

Частные решения уравнения (1) будем искать в виде
, гдек – некоторое число. Дифференцируя эту функцию два раза и подставляя выражения для
в уравнение (1), получимт.е.или
(2) (
).

Уравнение 2 называется характеристическим уравнением дифференциального уравнения.

При решении характеристического уравнения (2) возможны три случая.

Случай 1. Корнииуравнения (2) действительные и различные:

и

.

Случай 2. Корнииуравнения (2) действительные и равные:
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид
.

Случай 3. Корнииуравнения (2) комплексные:
,
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид

Пример. Решить уравнение
.

Решение: составим характеристическое уравнение:
. Тогда
. Общее решение данного уравнения
.

Экстремум функции нескольких переменных. Условный экстремум.

Экстремум функции нескольких переменных

Определение. Точка М (х о о ) называется точкой максимума (минимума) функции z = f (x , у), если существует окрестность точки М, такая, что для всех точек {х, у) из этой окрестности выполня­ется неравенство
(
)

На рис. 1 точка А
- есть точка минимума, а точка В
-
точка максимума.

Необходи­мое условие экстремума - многомерный аналог теоре­мы Ферма.

Теорема. Пусть точка
– есть точка экстре­мума дифференцируемой функ­ции
z = f (x , у). Тогда частные производные
и
в
этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстрему­ма функции z = f (x , у), т.е. частные производные z " x и z " y равны нулю, называются критическими или стационарными.

Равенство частных производных нулю выражает лишь необходи­мое, но недостаточное условие экстремума функции нескольких переменных.

На рис. изображена так называемая седловая точка М (х о о ). Частные производные
и
равны ну­лю, но, очевидно, никакого экс­тремума в точке М(х о о ) нет.

Такие седловые точки явля­ются двумерными аналогами точек перегиба функций одной переменной. Задача заключается в том, чтобы отделить их от то­чек экстремума. Иными слова­ми, требуется знать достаточное условие экстремума.

Теорема (достаточное условие экстремума функции двух пере­менных). Пусть функция z = f (x , у): а) определена в некоторой окре­стности критической точки (х о о ), в которой
=0 и
=0
;

б) имеет в этой точке непрерывные частные производные вто­рого порядка
;

;
Тогда, если ∆=АС- В 2 >0, то в точке (х о о ) функ­ция z = f (x , у) имеет экстремум, причем если А<0 - максимум, если А>0 - минимум. В случае ∆=АС- В 2 <0, функция z = f (x , у) экстре­мума не имеет. Если ∆=АС- В 2 =0, то вопрос о наличии экстрему­ма остается открытым.

Исследование функции двух переменных на экстремум реко­мендуется проводить по следующей схеме:

    Найти частные производные функции z " x и z " y .

    Решить систему уравнений z " x =0, z " y =0 и найти критические точки функции.

    Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточ­ного условия сделать вывод о наличии экстремумов.

    Найти экстремумы (экстремальные значения) функции.

Пример. Найти экстремумы функции

Решение. 1. Находим частные производные


2. Критические точки функции находим из системы уравнений:

имеющей четыре решения (1; 1), (1; -1), (-1; 1) и (-1; -1).

3. Находим частные производные второго порядка:

;
;
, вычисляем их значения в каждой критической точке и проверяем в ней выпол­нение достаточного условия экстремума.

Например, в точке (1; 1) A = z "(1; 1)= -1; В=0; С= -1. Так как = АС- В 2 = (-1) 2 -0=1 >0 и А=-1<0, то точка (1; 1) есть точка максимума.

Аналогично устанавливаем, что (-1; -1) - точка минимума, а в точках (1; -1) и (-1; 1), в которых =АС- В 2 <0, - экстремума нет. Эти точки являются седловыми.

4. Находим экстремумы функции z max = z(l; 1) = 2, z min = z(-l; -1) = -2,

Условный экстремум. Метод множителей Лагранжа.

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области опреде­ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается функция z = f (x , y ), аргументы х и у которой удовлетворяют условию g (х,у) = С, называемому уравне­нием связи.

Определение. Точка
называется точкой
условного мак­симума (минимума), если существует такая окрестность этой точки, что для всех точек (х,у) из этой окрестности удовлетворя­ющих условию g (x , y ) = С, выполняется неравенство

(
).

На рис. изображена точка условного максимума
.
Очевидно, что она не является точкой безусловного экстремума функции z = f (x , y ) (на рис. это точка
).

Наиболее простым способом нахождения условного экстре­мума функции двух переменных является сведение задачи к оты­сканию экстремума функции одной переменной. Допустим уравнение связи g (x , y ) = С удалось разрешить относи­тельно одной из перемен­ных, например, выразить у через х:
.
Подста­вив полученное выражение в функцию двух перемен­ных, получим z = f (x , y ) =
, т.е. функцию одной переменной. Ее экстремум и будет услов­ным экстремумом функ­ции z = f (x , y ).

Пример. х 2 + y 2 при условии 3х +2у = 11.

Решение. Выразим из уравнения 3х +2у = 11 переменную y через переменную x и подставим полученное
в функциюz. Получим z = x 2 +2
илиz =
.
Эта функция имеет единственный минимум при = 3. Соответствующее значение функции
Таким образом, (3; 1) - точка условного экстремума (минимума).

В рассмотренном примере уравнение связи g (x , у) = С оказа­лось линейным, поэтому его легко удалось разрешить относи­тельно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае исполь­зуется метод множителей Лагранжа.

Рассмотрим функцию трех переменных

Эта функция называется функцией Лагранжа, а - множите­лем Лагранжа. Верна следующая теорема.

Теорема. Если точка
является точкой условного экс­тремума функции
z = f (x , y ) при условии g (x , y ) = С, то существует значение такое, что точка
является точкой экстре­мума функции
L { x , y , ).

Таким образом, для нахождения условного экстремума функ­ции z = f (х,у) при условии g (x , y ) = С требуется найти решение системы

На рис. показан геометрический смысл условий Ла­гранжа. Линия g (х,у) = С пунктирная, линия уровня g (x , y ) = Q функции z = f (x , y ) сплошные.

Из рис. следует, что в точке условного экстремума линия уровня функции z = f (x , y ) касает­ся линии g (x , y ) = С.

Пример. Найти точки максимума и мини­мума функции z = х 2 + y 2 при условии 3х +2у = 11, ис­пользуя метод множителей Ла­гранжа.

Решение. Составляем функцию Лагранжа L = х 2 + 2у 2 +

Приравнивая к нулю ее частные производные, получим систему уравнений

Ее единственное решение (х=3, у=1, =-2). Таким образом, точкой условного экстремума может быть только точка (3;1). Не­трудно убедиться в том, что в этой точке функция z = f (x , y ) имеет условный минимум.

Рассмотрен метод решения дифференциальных уравнений с разделяющимися переменными. Дан пример подробного решения дифференциального уравнения с разделяющимися переменными.

Содержание

Определение

Пусть s(x) , q(x) - функции от переменной x ;
p(y) , r(y) - функции от переменной y .

Дифференциальное уравнение с разделяющимися переменными - это уравнение вида

Метод решения дифференциального уравнения с разделяющимися переменными

Рассмотрим уравнение:
(i) .
Выразим производную y′ через дифференциалы.
;
.
Умножим на dx .
(ii)
Разделим уравнение на s(x) r(y) . Это можно сделать, если s(x) r(y) ≠ 0 . При s(x) r(y) ≠ 0 имеем
.
Интегрируя, получаем общий интеграл в квадратурах
(iii) .

Поскольку мы делили на s(x) r(y) , то получили интеграл уравнения при s(x) ≠ 0 и r(y) ≠ 0 . Далее нужно решить уравнение
r(y) = 0 .
Если это уравнение имеют корни, то они также являются решениями уравнения (i). Пусть уравнение r(y) = 0 . имеет n корней a i , r(a i ) = 0 , i = 1, 2, ... , n . Тогда постоянные y = a i являются решениями уравнения (i). Часть этих решений может уже содержаться в общем интеграле (iii).

Заметим, что если исходное уравнение задано в форме (ii), то следует также решить уравнение
s(x) = 0 .
Его корни b j , s(b j ) = 0 , j = 1, 2, ... , m . дают решения x = b j .

Пример решения дифференциального уравнения с разделяющимися переменными

Решить уравнение

Выразим производную через дифференциалы:


Умножим на dx и разделим на . При y ≠ 0 имеем:

Интегрируем.

Вычисляем интегралы, применяя формулу .



Подставляя, получаем общий интеграл уравнения
.

Теперь рассмотрим случай, y = 0 .
Очевидно, что y = 0 является решением исходного уравнения. Оно не входит в общий интеграл .
Поэтому добавим его в окончательный результат.

; y = 0 .

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение диффуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что диффуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.


Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.


Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, как правильно оформить презентацию , обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальное уравнение с разделенными переменными записывается в виде: (1). В этом уравнении одно слагаемое зависит только от x, а другое – от y. Проинтегрировав почленно это уравнение, получаем:
– его общий интеграл.

Пример : найти общий интеграл уравнения:
.

Решение: данное уравнение – дифференциальное уравнение с разделенными переменными. Поэтому
или
Обозначим
. Тогда
– общий интеграл дифференциального уравнения.

Уравнение с разделяющимися переменными имеет вид (2). Уравнение (2)легко сводиться к уравнению (1) путем почленного деления его на
. Получаем:

– общий интеграл.

Пример: Решить уравнение .

Решение: преобразуем левую часть уравнения: . Делим обе части уравнения на


Решением является выражение:
т.е.

Однородные дифференциальные уравнения. Уравнения Бернулли. Линейные дифференциальные уравнения первого порядка.

Уравнение вида называетсяоднородным , если
и
– однородные функции одного порядка (измерения). Функция
называется однородной функцией первого порядка (измерения), если при умножении каждого ее аргумента на произвольный множительвся функция умножиться на, т.е.
=
.

Однородное уравнение может быть приведено к виду
. С помощью подстановки
(
)однородное уравнение приводится к уравнению с разделяющимися переменными по отношению к новой функции.

Дифференциальное уравнение первого порядка называется линейным , если его можно записать в виде
.

Метод Бернулли

Решение уравнения
ищется в виде произведения двух других функций, т.е. с помощью подстановки
(
).

Пример: проинтегрировать уравнение
.

Полагаем
. Тогда , т.е. . Сначала решаем уравнение
=0:


.

Теперь решаем уравнение
т.е.


. Итак, общее решение данного уравнения есть
т.е.

Уравнение Я. Бернулли

Уравнение вида , где
называетсяуравнением Бернулли. Данное уравнение решается с помощью метода Бернулли.

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородным линейным дифференциальным уравнением второго порядка называется уравнение вида (1) , гдеипостоянны.

Частные решения уравнения (1) будем искать в виде
, гдек – некоторое число. Дифференцируя эту функцию два раза и подставляя выражения для
в уравнение (1), получимт.е.или
(2) (
).

Уравнение 2 называется характеристическим уравнением дифференциального уравнения.

При решении характеристического уравнения (2) возможны три случая.

Случай 1. Корнииуравнения (2) действительные и различные:

и

.

Случай 2. Корнииуравнения (2) действительные и равные:
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид
.

Случай 3. Корнииуравнения (2) комплексные:
,
. В этом случае частными решениями уравнения (1) являются функции
и
. Следовательно, общее решение уравнения (1) имеет вид

Пример. Решить уравнение
.

Решение: составим характеристическое уравнение:
. Тогда
. Общее решение данного уравнения
.

Экстремум функции нескольких переменных. Условный экстремум.

Экстремум функции нескольких переменных

Определение. Точка М (х о о ) называется точкой максимума (минимума) функции z = f (x , у), если существует окрестность точки М, такая, что для всех точек {х, у) из этой окрестности выполня­ется неравенство
(
)

На рис. 1 точка А
- есть точка минимума, а точка В
-
точка максимума.

Необходи­мое условие экстремума - многомерный аналог теоре­мы Ферма.

Теорема. Пусть точка
– есть точка экстре­мума дифференцируемой функ­ции
z = f (x , у). Тогда частные производные
и
в
этой точке равны нулю.

Точки, в которых выполнены необходимые условия экстрему­ма функции z = f (x , у), т.е. частные производные z " x и z " y равны нулю, называются критическими или стационарными.

Равенство частных производных нулю выражает лишь необходи­мое, но недостаточное условие экстремума функции нескольких переменных.

На рис. изображена так называемая седловая точка М (х о о ). Частные производные
и
равны ну­лю, но, очевидно, никакого экс­тремума в точке М(х о о ) нет.

Такие седловые точки явля­ются двумерными аналогами точек перегиба функций одной переменной. Задача заключается в том, чтобы отделить их от то­чек экстремума. Иными слова­ми, требуется знать достаточное условие экстремума.

Теорема (достаточное условие экстремума функции двух пере­менных). Пусть функция z = f (x , у): а) определена в некоторой окре­стности критической точки (х о о ), в которой
=0 и
=0
;

б) имеет в этой точке непрерывные частные производные вто­рого порядка
;

;
Тогда, если ∆=АС- В 2 >0, то в точке (х о о ) функ­ция z = f (x , у) имеет экстремум, причем если А<0 - максимум, если А>0 - минимум. В случае ∆=АС- В 2 <0, функция z = f (x , у) экстре­мума не имеет. Если ∆=АС- В 2 =0, то вопрос о наличии экстрему­ма остается открытым.

Исследование функции двух переменных на экстремум реко­мендуется проводить по следующей схеме:

    Найти частные производные функции z " x и z " y .

    Решить систему уравнений z " x =0, z " y =0 и найти критические точки функции.

    Найти частные производные второго порядка, вычислить их значения в каждой критической точке и с помощью достаточ­ного условия сделать вывод о наличии экстремумов.

    Найти экстремумы (экстремальные значения) функции.

Пример. Найти экстремумы функции

Решение. 1. Находим частные производные


2. Критические точки функции находим из системы уравнений:

имеющей четыре решения (1; 1), (1; -1), (-1; 1) и (-1; -1).

3. Находим частные производные второго порядка:

;
;
, вычисляем их значения в каждой критической точке и проверяем в ней выпол­нение достаточного условия экстремума.

Например, в точке (1; 1) A = z "(1; 1)= -1; В=0; С= -1. Так как = АС- В 2 = (-1) 2 -0=1 >0 и А=-1<0, то точка (1; 1) есть точка максимума.

Аналогично устанавливаем, что (-1; -1) - точка минимума, а в точках (1; -1) и (-1; 1), в которых =АС- В 2 <0, - экстремума нет. Эти точки являются седловыми.

4. Находим экстремумы функции z max = z(l; 1) = 2, z min = z(-l; -1) = -2,

Условный экстремум. Метод множителей Лагранжа.

Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области опреде­ления, а на множестве, удовлетворяющем некоторому условию.

Пусть рассматривается функция z = f (x , y ), аргументы х и у которой удовлетворяют условию g (х,у) = С, называемому уравне­нием связи.

Определение. Точка
называется точкой
условного мак­симума (минимума), если существует такая окрестность этой точки, что для всех точек (х,у) из этой окрестности удовлетворя­ющих условию g (x , y ) = С, выполняется неравенство

(
).

На рис. изображена точка условного максимума
.
Очевидно, что она не является точкой безусловного экстремума функции z = f (x , y ) (на рис. это точка
).

Наиболее простым способом нахождения условного экстре­мума функции двух переменных является сведение задачи к оты­сканию экстремума функции одной переменной. Допустим уравнение связи g (x , y ) = С удалось разрешить относи­тельно одной из перемен­ных, например, выразить у через х:
.
Подста­вив полученное выражение в функцию двух перемен­ных, получим z = f (x , y ) =
, т.е. функцию одной переменной. Ее экстремум и будет услов­ным экстремумом функ­ции z = f (x , y ).

Пример. х 2 + y 2 при условии 3х +2у = 11.

Решение. Выразим из уравнения 3х +2у = 11 переменную y через переменную x и подставим полученное
в функциюz. Получим z = x 2 +2
илиz =
.
Эта функция имеет единственный минимум при = 3. Соответствующее значение функции
Таким образом, (3; 1) - точка условного экстремума (минимума).

В рассмотренном примере уравнение связи g (x , у) = С оказа­лось линейным, поэтому его легко удалось разрешить относи­тельно одной из переменных. Однако в более сложных случаях сделать это не удается.

Для отыскания условного экстремума в общем случае исполь­зуется метод множителей Лагранжа.

Рассмотрим функцию трех переменных

Эта функция называется функцией Лагранжа, а - множите­лем Лагранжа. Верна следующая теорема.

Теорема. Если точка
является точкой условного экс­тремума функции
z = f (x , y ) при условии g (x , y ) = С, то существует значение такое, что точка
является точкой экстре­мума функции
L { x , y , ).

Таким образом, для нахождения условного экстремума функ­ции z = f (х,у) при условии g (x , y ) = С требуется найти решение системы

На рис. показан геометрический смысл условий Ла­гранжа. Линия g (х,у) = С пунктирная, линия уровня g (x , y ) = Q функции z = f (x , y ) сплошные.

Из рис. следует, что в точке условного экстремума линия уровня функции z = f (x , y ) касает­ся линии g (x , y ) = С.

Пример. Найти точки максимума и мини­мума функции z = х 2 + y 2 при условии 3х +2у = 11, ис­пользуя метод множителей Ла­гранжа.

Решение. Составляем функцию Лагранжа L = х 2 + 2у 2 +

Приравнивая к нулю ее частные производные, получим систему уравнений

Ее единственное решение (х=3, у=1, =-2). Таким образом, точкой условного экстремума может быть только точка (3;1). Не­трудно убедиться в том, что в этой точке функция z = f (x , y ) имеет условный минимум.

Обыкновенные дифференциальные уравнения.

Решение различных геометрических, физических и инженерных задач часто приводят к уравнениям, которые связывают независимые переменные, характеризующие ту ил иную задачу, с какой – либо функцией этих переменных и производными этой функции различных порядков.

В качестве примера можно рассмотреть простейший случай равноускоренного движения материальной точки.

Известно, что перемещение материальной точки при равноускоренном движении является функцией времени и выражается по формуле:

В свою очередь ускорение a является производной по времени t от скорости V , которая также является производной по времени t от перемещения S . Т.е.

Тогда получаем:
- уравнение связывает функцию f(t) с независимой переменной t и производной второго порядка функции f(t).

Определение. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функции и производные (или дифференциалы) этой функции.

Определение. Если дифференциальное уравнение имеет одну независимую переменную, то оно называется обыкновенным дифференциальным уравнением , если же независимых переменных две или более, то такое дифференциальное уравнение называется дифференциальным уравнением в частных производных.

Определение. Наивысший порядок производных, входящих в уравнение, называется порядком дифференциального уравнения.

Пример.

- обыкновенное дифференциальное уравнение 1 – го порядка. В общем виде записывается
.

- обыкновенное дифференциальное уравнение 2 – го порядка. В общем виде записывается

- дифференциальное уравнение в частных производных первого порядка.

Определение. Общим решением дифференциального уравнения называется такая дифференцируемая функция y = (x, C), которая при подстановке в исходное уравнение вместо неизвестной функции обращает уравнение в тождество.

Свойства общего решения.

1) Т.к. постоянная С – произвольная величина, то вообще говоря дифференциальное уравнение имеет бесконечное множество решений.

2) При каких- либо начальных условиях х = х 0 , у(х 0) = у 0 существует такое значение С = С 0 , при котором решением дифференциального уравнения является функция у = (х, С 0).

Определение. Решение вида у = (х, С 0) называется частным решением дифференциального уравнения.

Определение. Задачей Коши (Огюстен Луи Коши (1789-1857)- французский математик) называется нахождение любого частного решения дифференциального уравнения вида у = (х, С 0), удовлетворяющего начальным условиям у(х 0) = у 0 .

Теорема Коши. (теорема о существовании и единственности решения дифференциального уравнения 1- го порядка)

Если функция f (x , y ) непрерывна в некоторой области D в плоскости XOY и имеет в этой области непрерывную частную производную
, то какова бы не была точка (х
0 , у 0 ) в области D , существует единственное решение
уравнения
, определенное в некотором интервале, содержащем точку х
0 , принимающее при х = х 0 значение 0 ) = у 0 , т.е. существует единственное решение дифференциального уравнения.

Определение. Интегралом дифференциального уравнения называется любое уравнение, не содержащее производных, для которого данное дифференциальное уравнение является следствием.

Пример. Найти общее решение дифференциального уравнения
.

Общее решение дифференциального уравнения ищется с помощью интегрирования левой и правой частей уравнения, которое предварительно преобразовано следующим образом:

Теперь интегрируем:

- это общее решение исходного дифференциального уравнения.

Допустим, заданы некоторые начальные условия: x 0 = 1; y 0 = 2, тогда имеем

При подстановке полученного значения постоянной в общее решение получаем частное решение при заданных начальных условиях (решение задачи Коши).

Определение. Интегральной кривой называется график y = (x) решения дифференциального уравнения на плоскости ХОY.

Определение. Особым решением дифференциального уравнения называется такое решение, во всех точках которого условие единственности Коши (см. Теорема Коши. ) не выполняется, т.е. в окрестности некоторой точки (х, у) существует не менее двух интегральных кривых.

Особые решения не зависят от постоянной С.

Особые решения нельзя получить из общего решения ни при каких значениях постоянной С. Если построить семейство интегральных кривых дифференциального уравнения, то особое решение будет изображаться линией, которая в каждой своей точке касается по крайней мере одной интегральной кривой.

Отметим, что не каждое дифференциальное уравнение имеет особые решения.

Пример.
Найти особое решение, если оно существует.

Данное дифференциальное уравнение имеет также особое решение у = 0. Это решение невозможно получить из общего, однако при подстановке в исходное уравнение получаем тождество. Мнение, что решение y = 0 можно получить из общего решения при С 1 = 0 ошибочно, ведь C 1 = e C 0.

Дифференциальные уравнения первого порядка.

Определение. Дифференциальным уравнением первого порядка называется соотношение, связывающее функцию, ее первую производную и независимую переменную, т.е. соотношение вида:

Если такое соотношение преобразовать к виду
то это дифференциальное уравнение первого порядка будет называться уравнением,разрешенным относительно производной.

Функцию f(x,y) представим в виде:
тогда при подстановке в полученное выше уравнение имеем:

    это так называемая дифференциальная форма уравнения первого порядка.

Уравнения вида y ’ = f ( x ).

Пусть функция f(x) – определена и непрерывна на некотором интервале

a < x < b. В таком случае все решения данного дифференциального уравнения находятся как
. Если заданы начальные условия х 0 и у 0 , то можно определить постоянную С.

Уравнения с разделяющимися переменными

Определение. Дифференциальное уравнение
называетсяуравнением с разделяющимися переменными , если его можно записать в виде

.

Такое уравнение можно представить также в виде:

Перейдем к новым обозначениям

Получаем:

После нахождения соответствующих интегралов получается общее решение дифференциального уравнения с разделяющимися переменными.

Если заданы начальные условия, то при их подстановке в общее решение находится постоянная величина С, а, соответственно, и частное решение.

Пример. Найти общее решение дифференциального уравнения:

Интеграл, стоящий в левой части, берется по частям (см. Интегрирование по частям. ):

    это есть общий интеграл исходного дифференциального уравнения, т.к. искомая функция и не выражена через независимую переменную. В этом и заключается отличие общего (частного) интеграла от общего (частного) решения.

Чтобы проверить правильность полученного ответа продифференцируем его по переменной х.

- верно

Пример. Найти решение дифференциального уравнения
при условии у(2) = 1.

при у(2) = 1 получаем

Итого:
или
- частное решение;

Проверка:
, итого

- верно.

Пример. Решить уравнение

- общий интеграл

- общее решение

Пример. Решить уравнение

Пример. Решить уравнение
при условии у(1) = 0.

Интеграл, стоящий в левой части будем брать по частям (см. Интегрирование по частям. ).

Если у(1) = 0, то

Итого, частный интеграл:
.

Пример. Решить уравнение .

Для нахождения интеграла, стоящего в левой части уравнения см. Таблица основных интегралов. п.16. Получаем общий интеграл:

Пример. Решить уравнение

Преобразуем заданное уравнение:

Получили общий интеграл данного дифференциального уравнения. Если из этого соотношения выразить искомую функцию у, то получим общее решение.

Пример. Решить уравнение
.

;
;

Допустим, заданы некоторые начальные условия х 0 и у 0 . Тогда:

Получаем частное решение

Однородные уравнения.

Определение. Функция f(x, y) называется однородной n – го измерения относительно своих аргументов х и у, если для любого значения параметра t (кроме нуля) выполняется тождество:

Пример. Является ли однородной функция

Таким образом, функция f(x, y) является однородной 3- го порядка.

Определение. Дифференциальное уравнение вида
называетсяоднородным , если его правая часть f(x, y) есть однородная функция нулевого измерения относительно своих аргументов.

Любое уравнение вида является однородным, если функцииP (x , y ) и Q (x , y ) – однородные функции одинакового измерения.

Решение любого однородного уравнения основано на приведении этого уравнения к уравнению с разделяющимися переменными.

Рассмотрим однородное уравнение

Т.к. функция f(x, y) – однородная нулевого измерения, то можно записать:

Т.к. параметр t вообще говоря произвольный, предположим, что . Получаем:

Правая часть полученного равенства зависит фактически только от одного аргумента
, т.е.

Исходное дифференциальное уравнение таким образом можно записать в виде:

таким образом, получили уравнение с разделяющимися переменными относительно неизвестной функции u.

Пример. Решить уравнение
.

Введем вспомогательную функцию u .

.

Отметим, что введенная нами функция u всегда положительна, т.к. в противном случае теряет смысл исходное дифференциальное уравнение, содержащее
.

Подставляем в исходное уравнение:

Разделяем переменные:

Интегрируя, получаем:

Переходя от вспомогательной функции обратно к функции у, получаем общее решение:

Уравнения, приводящиеся к однородным.

Кроме уравнений, описанных выше, существует класс уравнений, которые с помощью определенных подстановок могут приведены к однородным.

Это уравнения вида
.

Если определитель
то переменные могут быть разделены подстановкой

где  и  - решения системы уравнений

Пример. Решить уравнение

Получаем

Находим значение определителя
.

Решаем систему уравнений

Применяем подстановку в исходное уравнение:

Заменяем переменную
при подстановке в выражение, записанное выше, имеем: