Меню Рубрики

Реакционная способность гомологов бензола.

Первая группа реакций — реакции замещения. Мы говорили, что арены не имеют кратных связей в структуре молекулы, а содержат сопряженную систему из шести электронов, которая очень стабильна и придает дополнительную прочность бензольному кольцу. Поэтому в химических реакциях происходит в первую очередь замещение атомов водорода, а не разрушение бензольного кольца.

С реакциями замещения мы уже сталкивались при разговоре об алканах , но для них эти реакции шли по радикальному механизму, а для аренов характерен ионный механизм реакций замещения.

Первое химическое свойство — галогенирование. Замещение атома водорода на атом галогена — хлора или брома.

Реакция идет при нагревании и обязательно с участием катализатора. В случае с хлором это может быть хлорид алюминия или хлорид железа три. Катализатор поляризует молекулу галогена, в результате чего происходит гетеролитический разрыв связи и получаются ионы.

Положительно заряженный ион хлора и вступает в реакцию с бензолом.

Если реакция происходит с бромом, то катализатором выступает бромид железа три или бромид алюминия.

Важно отметить, что реакция происходит с молекулярным бромом, а не с бромной водой. С бромной водой бензол не реагирует.

У галогенирования гомологов бензола есть свои особенности. В молекуле толуола метильная группа облегчает замещение в кольце, реакционная способность повышается, и реакция идет в более мягких условиях, то есть уже при комнатной температуре.

Важно отметить, что замещение всегда происходит в орто- и пара-положениях, поэтому получается смесь изомеров.

Второе свойство — нитрование бензола, введение нитрогруппы в бензольное кольцо.

Образуется тяжелая желтоватая жидкость с запахом горького миндаля — нитробензол, поэтому реакция может быть качественной на бензол. Для нитрования используется нитрующая смесь концентрированной азотной и серной кислот. Реакция проводится при нагревании.

Напомню, что для нитрования алканов в реакции Коновалова использовалась разбавленная азотная кислота без добавления серной.

При нитровании толуола, также как и при галогенировании, образуется смесь орто- и пара- изомеров.

Третье свойство — алкилирование бензола галогеналканами.

Эта реакция позволяет ввести углеводородный радикал в бензольное кольцо и может считаться способом получения гомологов бензола. В качестве катализатора используется хлорид алюминия, способствующий распаду молекулы галогеналкана на ионы. Также необходимо нагревание.

Четвертое свойство — алкилирование бензола алкенами.

Таким способом можно получить, например, кумол или же этилбензол. Катализатор — хлорид алюминия.

2. Реакции присоединения к бензолу

Вторая группа реакций — реакции присоединения. Мы говорили, что эти реакции не характерны, но они возможны при достаточно жестких условиях с разрушением пи-электронного облака и образованием шести сигма-связей.

Пятое свойство в общем списке — гидрирование, присоединение водорода.

Температура, давление, катализатор никель или платина. Таким же образом способен реагировать толуол.

Шестое свойство — хлорирование. Обратите внимание, что речь идет именно о взаимодействии с хлором, поскольку бром в эту реакцию не вступает.

Реакция протекает при жестком ультрафиолетовом облучении. Образуется гексахлорциклогексан, другое название гексахлоран, твердое вещество.

Важно помнить, что для бензола не возможны реакции присоединения галогеноводородов (гидрогалогенирование) и присоединение воды (гидратация).

3. Замещение в боковой цепи гомологов бензола

Третья группа реакций касается только гомологов бензола — это замещение в боковой цепи.

Седьмое свойство в общем списке — галогенирование по альфа-атому углерода в боковой цепи.

Реакция происходит при нагревании или облучении и всегда только по альфа-углероду. При продолжении галогенирования, второй атом галогена снова встанет в альфа-положение.

4. Окисление гомологов бензола

Четвертая группа реакций — окисление.

Бензольное кольцо слишком прочное, поэтому бензол не окисляется перманганатом калия — не обесцвечивает его раствор. Это очень важно помнить.

Зато гомологи бензола окисляются подкисленным раствором перманганата калия при нагревании. И это восьмое химическое свойство.

Получается бензойная кислота. Наблюдается обесцвечивание раствора. При этом, какой бы длинной не была углеродная цепь заместителя, всегда происходит ее разрыв после первого атома углерода и альфа-атом окисляется до карбоксильной группы с образованием бензойной кислоты. Оставшаяся часть молекулы окисляется до соответствующий кислоты или, если это только один атом углерода, до углекислого газа.

Если гомолог бензола имеет больше одного углеводородного заместителя у ароматического кольца, то окисление происходит по тем же правилам — окисляется углерод, находящийся в альфа-положении.

В данном примере получается двухосновная ароматическая кислота, которая называется фталевая кислота.

Особым образом отмечу окисление кумола, изопропилбензола, кислородом воздуха в присутствии серной кислоты.

Это так называемый кумольный способ получения фенола. Как правило, сталкиваться с этой реакцией приходится в вопросах, касающихся получения фенола. Это промышленный способ.

Девятое свойство — горение, полное окисление кислородом. Бензол и его гомологи сгорают до углекислого газа и воды.

Запишем уравнение горения бензола в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле арена, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть (2n-6)/2, а значит n-3.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n-3 из воды, итого 3n-3. Слева атомов кислорода столько же — 3n-3, а значит молекул в два раза меньше, потому как в состав молекулы входят два атома. То есть (3n-3)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания гомологов бензола в общем виде.

Заголовок

Простой углеводород. Относится к ароматическим углеводородам, классу органических веществ.

Вещество представляет собой прозрачную жидкость, не имеет цвета, обладает сладковатым характерным запахом. Бензол относят к ненасыщенным углеводородам. Знаменитая формула бензольного кольца была предложена нобелевским лауреатом в области химии – Лайнусом Полингом. Именно он предложил изображать бензол в виде шестигранника с окружностью внутри. Это изображение дает понимание об отсутствии двойных связей и наличии единого электронного облака, в которое охвачены все 6 атомов углерода.

Формула

Получение бензола

Естественные источники получения

Естественный источник для получения бензола – это каменный уголь. Процесс коксования каменного угля был открыт Майклом Фарадеем в далеком 1825 году. Он изучал светильный газ, который использовали в фонарях уличного освещения, смог выделить и описать бензол. Сейчас этим способом из каменноугольной смолы бензол практически не получают. Существует множество других более продуктивных способов его получения.

Искусственные источники получения

  • Искусственный каталитический риформинг бензина. Для получения используются бензиновые нефтяные фракции. В этом процессе образуется большое количество толуола. Спрос на рынке для толуола не очень большой, поэтому из него также далее получают бензол. Из тяжелых фракций нефти пиролизом через процесс деалкилирования смеси толуола, ксилола получают бензол.
  • Получение методом Реппе. До 1948 года по методу Бертло получали бензол, пропуская ацетилен над активированным углем при температуре 400°C. Выход бензола был большой, но получалась многокомпонентная смесь веществ, с трудом поддающаяся очистке. В 1948 году Реппе заменил активированный уголь никелем. В результате на выходе получался бензол. Процесс называется тримеризацией ацетелена – три молекулы ацетилена превращаются в одну бензола:

3С 2 Н 2 → С 6 H 6 .

Свойства бензола

Физические свойства

При горении выделяется большое количество копоти, так как углеводород ненасыщенный (ему не хватает 8 атомов водорода, чтобы отвечать стандартной формуле предельных углеводородов). При низких температурах бензол становится белой кристаллической массой.

Химические свойства

Бензол вступает в реакции замещения в присутствии катализаторов – обычно это соли Al(3+) или Fe(3+):

C 6 H 6 + Br 2 = C 6 H 5 Br + HBr.

  • Нитрование – взаимодействие с азотной кислотой. В органической химии этот процесс сопровождается отщеплением OH-группы:

C 6 H 6 + HO-NO 2 → C 6 H 5 NO 2 + H 2 O.

  • Каталитическое алкилирование приводит к получению гомологов бензола – алкилбензолов:

С 6 H 6 + С 2 H 5 Cl → C 6 H 5 C 2 H 5 + HCl.

Гомологи бензола, содержащие радикал, реагирует не так как сам бензол. Реакции идут по-другому и часто на свету:

  • галогенирование С 6 H 5 -CH 3 + Br 2 (на свету) = С 6 H 5 -CH 2 Br + HBr;
  • нитрование – С 6 H 5 -CH 3 + 3HNO 3 → C 6 H 2 CH 3 (NO 2) 3 .

Реакции окисления бензола идут очень сложно и не характерны для этого вещества. Окисление характерно для гомологов. Вот, например, реакция получения бензойной кислоты:

С 6 H 5 CH 3 + [O] → C 6 H 5 COOH.

Процесс горения вещества происходит по стандартной схеме для всех органических веществ:

C n H 2n-6 + (3n-3)\2 O 2 → nCO 2 + (n-3)H 2 O.

Реакции гидрирования. Реакция проходит сложно, требуются катализаторы, давление, температура. В реакциях бензола с водородом получается циклогексан:

С 6 H 6 + 3H 2 → C 6 H 12 .

А в реакциях с алкилбензолом – метилциклогексан, где один атом водорода замещается на радикальную группу -CH 3:

С 6 H 5 CH 3 + 3H 2 → C 6 H 11 -CH 3 .

Применение бензола

Бензол в чистом виде практически не используется. Его вырабатывают для производства других важных соединений, таких как, например, этилбензол, из которого получают стирол и полистирол.

Львиную долю бензола пускают на производства фенола, который необходим в производстве капрона, красителей, пестицидов, лекарств. Знаменитое лекарство аспирин невозможно получать без участия фенола.

Циклогексан из бензола необходим для производства пластмасс и искусственных волокон, нитробензол идет на выработку анилина, который используют для производства каучуков, красителей и гербицидов.

Цель и задачи урока:

– систематизировать знания учащихся о строении молекулы бензола, о способах его получения;

– сформировать представление о физических и химических свойствах бензола, научить составлять уравнения химических реакций, характерных для бензола;

– продолжить формирование умений учащихся работать с видеоматериалами и мультимедийными презентациями.

Формы работы: фронтальная, индивидуальная.

Оборудование: компьютер, мультимедийный проектор, таблицы “Бензол”

Ход урока

I. Организационный момент.

Учитель: Тема, цели, и задачи урока.

II. Активизация знаний учащихся.

  1. Фронтальный опрос
. (Слайд 3).
  • Ароматические углеводороды – АРЕНЫ
  • Дайте определение ароматическим углеводородам.
  • Почему их называют ароматическими?
  • Типичным представителем ароматических углеводородов является...?
  • С чьими именами связано происхождение бензола?
  • Какова молекулярная формула бензола?
  • Сколько структурных формул бензола?
  • Тип гибридизации?
  • Какие связи в молекуле бензола и скольких?
  • Важнейшие источники получения ароматических углеводородов?
  • Другие методы получения?
  • Назовите гамологов бензола.
  1. Строение молекулы бензола
  2. (сообщение ученика). (Слайд 4).
  3. Самостоятельная работа учащихся
  4. (на 5-7 минут). (Слайд 5).
  • заполните пропуски в определении ароматических углеводородов;
  • напишите формулы заданных веществ;
  • закончите урванения реакций получения ароматических углеводородов.

III. Изучение нового материала.

1. Физические свойства бензола. (Слайд 6).

Бензол – бесцветная, летучая, огнеопасная жидкость с неприятным запахом. Он легче воды (=0,88 г/см3) и с ней не смешивается, но растворим в органических растворителях, и сам хорошо растворяет многие вещества. Бензол кипит при 80,1 С, при охлаждении легко застывает в белую кристаллическую массу. Бензол и его пары ядовиты. Систематическое вдыхание его паров вызывает анемию и лейкемию.

– Видеоматериал (физические свойства бензола).

2. Химические свойства бензола.

1) Химические свойства бензола определяется строением его молекулы.

2) Ароматическая -система обладает повышенной устойчивостью.

3) Поэтому хотя бензол является непредельным углеводородом, он проявляет свойства, характерные для предельных (склонность к реакциям замещения, устойчивость к действию окислителей).

Реакции замещения.

Реакции присоединения (Слайд 9).

При определенных условиях бензол может вступать и в реакции присоединения. В этих реакциях разрушается ароматическая система, поэтому для их протекания требуется жесткие условия.

Реакции окисления. (Слайд 10).

а) отношение бензола к бромной воде и к перманганату калия (видеоматериал)

б) горение бензола

2C 6 H 6 + 15O 2 –> 2CO 2 + 6H 2 O

IV. Закрепление.

(Слайд 11).
  1. Бензол реагирует с каждым веществом набора:

а) Br 2 , O 2 , KMnO 4

б) H 2 O, HNO 3 , CI 2

в) CI 2 , O 2 , HNO 3

г) HCI, Br 2 , H 2

Напишите уравнения реакций бензола с веществами этого набора, укажите условия их протекания.

V. Домашнее задание.

Определите вещества Х, Y, Z в схеме превращений:

Литература:

  1. Рудзитис Г.Е., Фельдман Ф.Г. Органическая химия: Учебник для 10 классов общеобразовательных учреждений. – 8-е изд. – М.: Просвещение, 2002.
  2. Новошинский И.И., Новошинская Н.С. Органическая химия. 11 кл.: Учебник для общеобразовательных учреждений. – М.: Издательство “Образование”, 2005.

Гомологи бензола способны реагировать по двум направлениям с участием ароматического ядра и боковой цепи (алкильных групп) в зависимости от природы реагента.

1.Реакции по ароматическому ядру

За счёт донорного эффекта алкильной группы реакции S E ArH идут в орто - и пара -положения ароматического ядра, при этом условия мягче чем для бензола.

а) галоидирование

б) нитрование

Обратите внимание, как, по мере увеличения числа акцепторных групп (-NO 2), повышается температура реакций нитрования.

в) сульфирование

В реакции преимущественно образуется п -изомер.

г) алкилирование

д) ацилирование

2.Реакции по боковой цепи

Алкильный фрагмент молекулы бензола вступает в реакции S R с участием атома углерода в α -положении (бензильное положение).

Окисление всех гомологов бензола KMnO 4 /100°C приводит к образованию бензойной кислоты.

Конденсированные арены

Конденсированные арены являются ароматическими системами (n=2 и 3). Степень ароматичности конденсированных аренов ниже, чем для бензола. Для них характерны реакции электрофильного замещения, реакции присоединения и окисления, идущие в более мягких условиях, чем для бензола.

Реакционная способность нафталина

Реакции S E ArH для нафталина идут, главным образом, по α -положению, за исключением сульфирования. Электрофильное присоединение Ad E протекает по положениям 1,4, при этом нафталин проявляет свойства сопряженных диенов.

1. Реакции электрофильного замещения, S E ArH

2.Реакции электрофильного присоединения, восстановления и окисления.

Реакционная способность антрацена и фенантрена

Реакции электрофильного замещения, S E ArH и электрофильного присоединения, Ad E для антрацена протекают преимущественно по положениям 9 и 10 (см. нижеприведенную схему).

Реакции электрофильного замещения, S E ArH и электрофильного присоединения, Ad E для фенантрена протекают преимущественно по положениям 9 и 10, как и для антрацена (см. ниже приведенную схему).

Реакции окисления и восстановления для антрацена и фенантрена.

Структуры некоторых лекарственных препаратов на основе нафталина, антрацена и фенантрена

Нафтизин (нафазолин, санорин)

сосудосуживающее действие (лечение ринитов, синуситов)

(в названии подчеркнута родоначальная структура, обратите внимание на нумерацию)

Нафтифин

противогрибковое действие (лечение дерматитов)

Набуметон

противовоспалительное, жаропонижающее, анальгезирующее действие (лечение остеоартрита, ревматоидного артрита).

Надолол

(термин цис, в данном случае, обозначает взаимное расположение гидроксильных групп)

гипотензивное (понижает артериальное давление) и антиаритмическое действие

Морфин, кодеин

Контрольные вопросы к главе «АРЕНЫ»

1. Какие свойства бензола отличают его от других ненасыщенных соединений-алкенов, алкинов? Что означает термин “ароматическое соединение”?

2. Напишите структурные формулы соединений: а) этилбензола; б) 1,3-диметилбензола (м -ксилола); в) 1,3,5-триметилбензола (мезитилена); г) изопропилбензола (кумола); д) 3-фенилпентана; е) винилбензола (стирола); ж) фенилацетилена; з)транс -дифенилэтилена (транс -стильбена).

3. Охарактеризуйте особенности строения соединений, проявляющих ароматичность. Сформулируйте правило Хюккеля. Какие из приведенных ниже соединений являются ароматическими:

4. Сравните отношение циклогексена и бензола к следующим реагентам в указанных условиях: а) Br 2 (H 2 O, 20 C); б) KMnO 4 (H 2 O, 0 C); в) Н 2 SO 4 (конц.) , 20 C; г) H 2 (Pd, 30 C); д) О 3 , затем H 2 O (Zn); е) HBr.

5. Напишите структурные формулы монозамещенных бензола, образующихся в реакциях бензола со следующими реагентами: а) Н 2 SO 4 (конц.); б) HNO 3 ; Н 2 SO 4 (конц.); в) Br 2 /Fe; г) Cl 2 /AlCl 3 ; д) СН 3 Br/AlBr 3 ; e) СН 3 COCl/AlСl 3 . Назовите реакции и их продукты. Укажите, с каким электрофилом реагирует бензол в каждом конкретном случае.

6. Приведите общую схему взаимодействия бензола с электрофильным реагентом (Е + ). Назовите промежуточные комплексы. Какая стадия обычно определяет скорость реакции? Приведите график изменения потенциальной энергии рассматриваемой реакции.

7. Дайте определение следующим понятиям: а) переходное состояние; б) промежуточное соединение; в) -комплекс; г)-комплекс. Какие из них являются тождественными? Проиллюстрируйте эти понятия на примере бромирования бензола в присутствии катализатораFeBr 3 .

8. На примере реакций этена и бензола с бромом сравните механизм электрофильного присоединения у алкенов с механизмом электрофильного замещения в ароматическом ряду. На какой стадии наблюдается различие и почему?

9. С помощью индуктивных и мезомерных эффектов опишите взаимодействие заместителя с бензольном кольцом в указанных соединениях:

Отметьте электронодонорные (ЭД) и электроноакцепторные (ЭА) заместители.

10. Напишите схемы мононитрования соединений: а) фенола; б) бензолсульфокислоты; в) изопропилбензола; г) хлорбензола. Для какого соединения относительная скорость замещения должна быть наибольшей и почему?

11. Образование каких продуктов следует ожидать при моносульфировании соединений: а) толуола; б) нитробензола; в) бензойной кислоты; г) бромбензола? Какое соединение должно сульфироваться легче всех? Почему?

12. Следующие соединения расположите в ряд по увеличению реакционной способности при бромировании их в бензольное кольцо: а) бензол; б) фенол; в) бензальдегид; г) этилбензол. Дайте объяснения.

13. Назовите следующие углеводороды:

14. Напишите реакции бензола со следующими реагентами: а) Cl 2 (Fe); б) 3Cl 2 (свет); в) HNO 3 (H 2 SO 4 ); г) О 2 (воздух) (V 2 О 5 , 450 C); д) 3О 3 , затем Н 2 О (Zn); е) H 2 SO 4 (олеум); ж) 3Н 2 (Ni, 200 C, p ). В чем состоит особенность реакций присоединения у бензола?

15. Напишите реакции толуола с указанными реагентами: а) 3Н 2 (Ni, 200 C, 9806,7 кПа); б) KMnO 4 в Н 2 О; в*) Сl 2 , свет; г*) Cl 2 (Fe); д*) СН 3 Cl (AlCl 3 ); e*) СН 3 COCl (AlCl 3 ); ж) HNO 3 (H 2 SO 4 ). Для реакций, отмеченных звездочкой, приведите механизмы.

16. Напишите реакции нитрования этилбензола в указанных условиях: а) 65% HNO 3 + H 2 SO 4 (конц.); б) 10% HNO 3 , нагревание, давление. Приведите механизмы.

17. Сравните отношение изопропилбензола к брому: а) в присутствии AlBr 3 ; б) при освещении и нагревании. Приведите реакции и их механизмы.

18. Какие соединения образуются из этилбензола и п -ксилола при действии указанных окислителей:а) О 3 , затем H 2 О (Zn); б) КMnO 4 в H 2 О, t ; в) К 2 Cr 2 O 7 в H 2 4 , t ?

19. С помощью каких реакций можно различить следующие пары соединений: а) этилбензол и м -ксилол; б) этилбензол и стирол; в) стирол и фенилацетилен; г)о - ип -ксилолы?

20. Какие соединения являются продуктами приведенных ниже реакций:

21. Исходя из бензола и любых других реагентов, получите приведенные ниже соединения: а) п -трет -бутилтолуол; б) этил-п -толилкетон; в) алилбензол; г)п -бромбензойную кислоту.

22. Назовите главные соединения, образующиеся в следующих реакциях:

ОПРЕДЕЛЕНИЕ

Бензол (циклогексатриен – 1,3,5) – органическое вещество, простейший представитель ряда ароматических углеводородов.

Формула – С 6 Н 6 (структурная формула – рис. 1). Молекулярная масса – 78, 11.

Рис. 1. Структурные и пространственная формулы бензола.

Все шесть атомов углерода в молекуле бензола находятся в sp 2 гибридном состоянии. Каждый атом углерода образует 3σ-связи с двумя другими атомами углерода и одним атомом водорода, лежащие в одной плоскости. Шесть атомов углерода образуют правильный шестиугольник (σ-скелет молекулы бензола). Каждый атом углерода имеет одну негибридизованную р-орбиталь, на которой находится один электрон. Шесть р-электронов образуют единое π-электронное облако (ароматическую систему), которое изображают кружочком внутри шестичленного цикла. Углеводородный радикал, полученный от бензола носит название C 6 H 5 – — фенил (Ph-).

Химические свойства бензола

Для бензола характерны реакции замещения, протекающие по электрофильному механизму:

— галогенирование (бензол взаимодействует с хлором и бромом в присутствии катализаторов – безводных AlCl 3 , FeCl 3 , AlBr 3)

C 6 H 6 + Cl 2 = C 6 H 5 -Cl + HCl;

— нитрование (бензол легко реагирует с нитрующей смесью – смесь концентрированных азотной и серной кислот)

— алкилирование алкенами

C 6 H 6 + CH 2 = CH-CH 3 → C 6 H 5 -CH(CH 3) 2 ;

Реакции присоединения к бензолу приводят к разрушению ароматической системы и протекают только в жестких условиях:

— гидрирование (реакция протекает при нагревании, катализатор – Pt)

— присоединение хлора (протекает под действием УФ-излучения с образованием твердого продукта – гексахлорциклогексана (гексахлорана) – C 6 H 6 Cl 6)

Как и любое органическое соединение бензол вступает в реакцию горения с образованием в качестве продуктов реакции углекислого газа и воды (горит коптящим пламенем):

2C 6 H 6 +15O 2 → 12CO 2 + 6H 2 O.

Физические свойства бензола

Бензол – жидкость без цвета, но обладающая специфическим резким запахом. Образует с водой азеотропную смесь, хорошо смешивается с эфирами, бензином и различными органическими растворителями. Температура кипения – 80,1С, плавления – 5,5С. Токсичен, канцероген (т.е. способствует развитию онкологических заболеваний).

Получение и применение бензола

Основные способы получения бензола:

— дегидроциклизация гексана (катализаторы – Pt, Cr 3 O 2)

CH 3 –(CH 2) 4 -CH 3 → С 6 Н 6 + 4H 2 ;

— дегидрирование циклогексана (реакция протекает при нагревании, катализатор – Pt)

С 6 Н 12 → С 6 Н 6 + 4H 2 ;

— тримеризация ацетилена (реакция протекает при нагревании до 600С, катализатор – активированный уголь)

3HC≡CH → C 6 H 6 .

Бензол служит сырьем для производства гомологов (этилбензола, кумола), циклогексана, нитробензола, хлорбензола и др. веществ. Ранее бензол использовали в качестве присадки к бензину для повышения его октанового числа, однако, сейчас, в связи с его высокой токсичностью содержание бензола в топливе строго нормируется. Иногда бензол используют в качестве растворителя.

Примеры решения задач

ПРИМЕР 1

Задание Запишите уравнения, с помощью которых можно осуществить следующие превращения: CH 4 → C 2 H 2 → C 6 H 6 → C 6 H 5 Cl.
Решение Для получения ацетилена из метана используют следующую реакцию:

2CH 4 → C 2 H 2 + 3Н 2 (t = 1400C).

Получение бензола из ацетилена возможно по реакции тримеризации ацетилена, протекающей при нагревании (t = 600C) и в присутствии активированного угля:

3C 2 H 2 → C 6 H 6 .

Реакция хлорирования бензола с получением в качестве продукта хлорбензола осуществляется в присутствии хлорида железа (III):

C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.

ПРИМЕР 2

Задание К 39 г бензола в присутствии хлорида железа (III) добавили 1 моль бромной воды. Какое количество вещества и сколько граммов каких продуктов при этом получилось?
Решение Запишем уравнение реакции бромирования бензола в присутствии хлорида железа (III):

C 6 H 6 + Br 2 → C 6 H 5 Br + HBr.

Продуктами реакции являются бромбензол и бромоводород. Молярная масса бензола, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 78 г/моль. Найдем количество вещества бензола:

n(C 6 H 6) = m(C 6 H 6) / M(C 6 H 6);

n(C 6 H 6) = 39 / 78 = 0,5 моль.

По условию задачи бензол вступил в реакцию с 1 моль брома. Следовательно, бензол находится в недостатке и дальнейшие расчеты будем производить по бензолу. Согласно уравнению реакции n(C 6 H 6): n(C 6 H 5 Br) : n(HBr) = 1:1:1, следовательно n(C 6 H 6) = n(C 6 H 5 Br) = : n(HBr) = 0,5 моль. Тогда, массы бромбензола и бромоводорода будут равны:

m(C 6 H 5 Br) = n(C 6 H 5 Br)×M(C 6 H 5 Br);

m(HBr) = n(HBr)×M(HBr).

Молярные массы бромбензола и бромоводорода, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 157 и 81 г/моль, соответственно.

m(C 6 H 5 Br) = 0,5×157 = 78,5 г;

m(HBr) = 0,5×81 = 40,5 г.

Ответ Продуктами реакции являются бромбензол и бромоводород. Массы бромбензола и бромоводорода – 78,5 и 40,5 г, соответственно.