Меню Рубрики

Распространение звука в воздухе. Как спастись от звука дрели, зная принцип распространения акустических волн

Специфическое ощущение, воспринимаемое нами как звук, является результатом воздействия на слуховой аппарат человека колебательного движения упругой среды - чаще всего воздуха. Колебания среды возбуждаются источником звука и, распространяясь в среде, доходят до приемного аппарата - нашего уха. Таким образом, бесконечное разнообразие слышимых нами звуков вызывается колебательными процессами, различающимися друг от друга частотой и амплитудой. Не следует смешивать две стороны одного и того же явления: звук как физический процесс представляет собой частный случай колебательного движения; в качестве же психо-физиологического явления звук есть некоторое специфическое ощущение, мехайизм возникновения которого изучен в настоящее время довольно подробно.

Говоря о физической стороне явления, мы характеризуем звук его интенсивностью (силой), его составом и частотой связанных с ним колебательных процессов; имея же в виду звуковые ощущения, мы говорим о громкости, о тембре, о высоте звука.

В твердых телах звук может распространяться как в виде продольных, так и в виде поперечных колебаний. Поскольку жидкости и газы не имеют упругости сдвига, очевидно, что в газообразной и в жидкой средах звук может распространяться только в виде продольных колебаний. В газах и в жидкостях звуковые волны представляют собой чередующиеся сгущения и разрежения среды, удаляющиеся от источника звука с определенной характерной для каждой среды скоростью. Поверхностью звуковой волны является геометрическое место частиц среды, имеющих одинаковую фазу колебаний. Поверхности звуковых волн можно провести, например, так, чтобы между поверхностями соседних волн заключались слой сгущения и слой разрежения. Направление, перпендикулярное к поверхности волны, называют лучом.

Звуковые волны в газообразной среде могут быть сфотографированы. Для этой цели за источником звука помещают

фотографическую пластинку, на которую спереди направляют пучок света от электрической искры так, чтобы эти лучи от мгновенной вспышки света падали на фотопластинку, пройдя через воздух, окружающий источник звука. На рис. 158-160 приведены полученные по указанному способу фотографии звуковых волн. Источник звука был отделен от фотопластинки небольшим экранчиком на подставке.

На рис. 158, а видно, что звуковая волна только что вышла из-за экрана; на рис. 158, б та же волна заснята вторично спустя несколько тысячных долей секунды. Поверхностью волны в данном случае является сфера. На фотографии изображение волны получается в виде окружности, радиус которой со временем увеличивается.

Рис. 158. Фотография звуковой волны в два момента времени (а и б). Отражение звуковой волны (в).

На рис. 158, в приведена фотография звуковой сферической волны, отраженной от плоской стенки. Здесь следует обратить внимание на то, что отраженная часть волны как бы исходит из точки, находящейся за отражающей поверхностью на таком же расстоянии от отражающей поверхности, как и источник звука. Общеизвестно, что явлением отражения звуковых волн объясняется эхо.

На рис. 159 показано изменение волновой поверхности при прохождении звуковой волны через линзообразный мешочек, наполненный водородом. Это изменение поверхности звуковой волны является следствием преломления (рефракции) звуковых лучей: у поверхности раздела двух сред, где скорость волн различна, направление распространения волны изменяется.

Рис. 160 воспроизводит фотографию звуковых волн, на пути распространения которых поставлен экран с четырьмя щелями. Проходя через щели, волны огибают экран. Это явление огибания волнами встреченных препятствий называют дифракцией.

Законы распространения, отражения, преломления и дифракции звуковых волн могут быть выведены из принципа Гюйгенса, согласно которому каждая приведенная в колебание частица

среды может рассматриваться как новый центр (источник) волн; интерференция всех этих волн дает наблюдаемую в действительности волну (способы применения принципа Гюйгенса будут пояснены в третьем томе на примере световых волн).

Звуковые волны несут с собой некоторое количество движения и вследствие этого оказывают давление на встречаемые ими препятствия.

Рис. 159. Преломление звуковой волны.

Рис. 160. Дифракция звуковых волн.

Для пояснения этого факта обратимся к рис. 161. На этом рисунке пунктиром изображена синусоида смещений частиц среды в некоторый момент времени при распространении в среде продольных волн. Скорости этих частиц в рассматриваемый момент времени изобразятся косинусоидой, или, что то же, синусоидой, опережающей синусоиду смещений на четверть периода (на рис. 161 - сплошная линия). Нетрудно сообразить, что сгущения среды будут наблюдаться там, где в данный момент смещение частиц равно нулю или близко к нулю и где скорость направлена в сторону распространения волн. Наоборот, разрежения среды будут наблюдаться там, где смещение частиц тоже равно нулю или близко к нулю, но где скорость частиц направлена в сторону, противоположную распространению волн. Итак, в сгущениях частицы движутся вперед, в разрежениях - назад. Но в

Рис. 161. В сгущениях проходящей звуковой волны частицы движутся вперед,

сгущенных слоях находится большее число частиц, чем в разрежениях. Таким образом, в любой момент времени в бегущих продольных звуковых волнах число частиц, движущихся вперед, несколько превышает число частиц, движущихся назад. Вследствие этого звуковая волна несет с собой некоторое количество движения, что и проявляется в давлении, которое звуковые волны оказывают на встречаемые ими препятствия.

Экспериментально давление звука было исследовано Рэлеем и Петром Николаевичем Лебедевым.

Теоретически скорость звука определяется формулой Лапласа [§ 65, формула (5)]:

где К - модуль всесторонней упругости (когда сжатие производится без притока и отдачи тепла), плотность.

Если сжатие тела производить, поддерживая температуру тела постоянной, то для модуля упругости получаются величины меньшие, чем в том случае, когда сжатие производится без притока и отдачи тепла. Эти два значения модуля всесторонней упругости, как доказывается в термодинамике, относятся так, как теплоемкость тела при постоянном давлении к теплоемкости тела при постоянном объеме.

Для газов (не слишком сжатых) изотермический модуль всесторонней упругости равен просто давлению газа Если, не изменяя температуры газа, мы сожмем газ (увеличим его плотность) в раз, то и давление газа возрастет в раз. Следовательно, по формуле Лапласа получается, что скорость звука в газе не зависит от плотности газа.

Из газовых законов и формулы Лапласа можно вывести (§ 134), что скорость звука в газах пропорциональна корню квадратному из абсолютной температуры газа:

где ускорение силы тяжести, отношение темплоемкостей универсальная газовая постоянная.

При С скорость звука в сухом воздухе равна при средних температурах и средней влажности скорость звука В воздухе считают равной Скорость звука в водороде при равен

В воде скорость звука составляет в стекле в железе

Следует заметить, что ударные звуковые волны, вызываемые выстрелом или взрывом, в начале своего пути имеют скорость,

значительно превосходящую нормальную скорость звука в данной среде. Ударная звуковая волна в воздухе, вызванная сильным взрывом, может иметь вблизи источника звука скорость, в несколько раз превосходящую нормальную скорость звука в воздухе, но уже на расстоянии десятков метров от места взрыва скорость распространения волны уменьшается до нормальной величины.

Как уже упоминалось в § 65, звуковые волны разной длины имеют практически одинаковую скорость. Исключение составляют те области частот, для которых характерно особенно быстрое затухание упругих волн при их распространении в рассматриваемой среде. Обычно эти частоты лежат далеко за пределами слышимости (для газов при атмосферном давлении - это частоты порядка колебаний в секунду). Теоретический анализ показывает, что дисперсия и поглощение звуковых волн связаны с тем, что для перераспределения энергии между поступательным и колебательным движениями молекул требуется некоторое, хотя и малое, время. Это приводит к тому, что длинные волны (волны звукового диапазона) движутся несколько медленнее, чем очень короткие «неслышимые» волны. Так, в парах углекислоты при и атмосферном давлении звук имеет скорость тогда как весьма короткие, «неслышимые», волны распространяются со скоростью

Звуковая волна, распространяясь в среде, может иметь различную форму, зависящую от размеров и формы источника звука. В случаях, технически наиболее интересных, источник звука (излучатель) представляет собой некоторую колеблющуюся поверхность, - таковы, например, мембрана телефона или диффузор громкоговорителя. Если такой источник звука излучает звуковые волны в открытое пространство, то форма волны существенным образом зависит от относительных размеров излучателя; излучатель, размеры которого велики сравнительно с длиной звуковой волны, излучает звуковую энергию в одном только направлении, именно в направлении своего колебательного движения. Напротив, излучатель малого сравнительно с длиной волны размера излучает звуковую энергию по всем направлениям. Форма волнового фронта в том и другом случаях будет, очевидно, различной.

Рассмотрим сначала первый случай. Представим себе жесткую плоскую поверхность достаточно большого (сравнительно с длиной волны) размера, совершающую колебательное движений в направлении своей нормали. Двигаясь вперед, такая поверхность создает перед собой сгущение, которое благодаря упругости среды будет распространяться в направлении смещения излучателя). Двигаясь обратно, излучатель создает за собой разрежение, которое будет перемещаться в среде вслед за начальным сгущением. Недлительном колебании излучателя мы будем наблюдать по обе стороны от него звуковую волну, характеризующуюся тем, что все частицы среды, находящиеся на равном расстоянии от излучающей поверхности средней плотности среды и скорости звука с:

Произведение средней плотности среды на скорость звука, называют акустическим сопротивлением среды.

Акустические сопротивления при 20° С

(см. скан)

Рассмотрим теперь случай сферических волн. Когда размеры излучающей поверхности становятся малыми сравнительно с длиной волны, волновой фронт заметно искривляется. Это происходит потому, что энергия колебаний распространяется по всем направлениям от излучателя.

Явление можно лучше всего понять на следующем простом примере. Представим себе, что на поверхность воды упало длинное бревно. Возникшие благодаря этому волны идут параллельными рядами в обе стороны от бревна. Иначе обстоит дело в том случае, когда в воду брошен небольшой камень, - при этом волны распространяются концентрическими кругами. Бревно велико сравнительно

с длиной волны на поверхности воды; идущие от него параллельные ряды волн представляют собой наглядную модель плоских волн. Камень же имеет небольшие размеры; расходящиеся от места его падения круги дают нам модель сферических волн. При распространении сферической волны поверхность волнового фронта возрастает пропорционально квадрату его радиуса. При постоянной мощности источника звука энергия, протекающая через каждый квадратный сантиметр сферической поверхности радиуса обратно пропорциональна Так как энергия колебаний пропорциональна квадрату амплитуды, то ясно, что амплитуда колебаний в сферической волне должна убывать как величина, обратная первой степени расстояния от источника звука. Уравнение сферической волны имеет, следовательно, такой вид:


К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред. На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния. От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна. Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны. Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот. Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо. Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором. Большое влияние на дальность распространения звука оказывает дифракция, то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

Распространение звука

Звуковые волны могут распространяться в воздухе, газах, жидкостях и твердых телах. В безвоздушном пространстве волны не возникают. В этом легко убедиться на простом опыте. Если электрический звонок поместить под воздухонепроницаемый колпак, из которого откачен воздух, мы никакого звука не услышим. Но как только колпак наполнится воздухом, возникает звук.

Скорость распространения колебательных движений от частицы к частице зависит от среды. В далекие времена воины прикладывали ухо к земле и таким образом обнаруживали конницу противника значительно раньше, чем она появлялась в поле зрения. А известный ученый Леонардо да Винчи в 15 веке писал: «Если ты, будучи на море, опустишь в воду отверстие трубы, а другой конец ее приложишь к уху, то услышишь шум кораблей, очень отдаленных от тебя».

Скорость распространения звука в воздухе впервые была измерена в 17 веке Миланской академией наук. На одном из холмов установили пушку, а на другом расположился наблюдательный пункт. Время засекли и в момент выстрела (по вспышке) и в момент приема звука. По расстоянию между наблюдательным пунктом и пушкой и времени происхождения сигнала скорость распространения звука рассчитать уже не составляло труда. Она оказалась равной 330 метров в секунду.

В воде скорость распространения звука впервые была измерена в 1827 году на Женевском озере. Две лодки находились одна от другой на расстоянии 13847 метров. На первой под днищем подвесили колокол, а со второй опустили в воду простейший гидрофон (рупор). На первой лодке одновременно с ударом в колокол подожгли порох, на второй наблюдатель в момент вспышки запустил секундомер и стал, ждать прихода звукового сигнала от колокола. Выяснилось, что в воде звук распространяется в 4 с лишним раза быстрее, чем в воздухе, т.е. со скоростью 1450 метров в секунду.

эхо - отражённый звук. Обычно эхо замечают, если слышат также прямой звук от источника, когда в одной точке пространства можно несколько раз услышать звук из одного источника, пришедший по прямому пути и отражённый (возможно несколько раз) от окружающих предметов. Так как при отражении звуковая волна теряет энергию, то звуковая волна от более сильного источника звука сможет отразиться от поверхностей (например стоящих друг напротив друга домов или стен) много раз, проходя через одну точку, что вызовет многократное эхо (такое эхо можно наблюдать от грома).

Эхо обусловлено тем, что звуковые волны могут отражаться твердыми поверхностями, это связано с динамической картиной разрежений и уплотнений воздуха вблизи отражающей поверхности. В случае, если источник звука расположен неподалеку от такой поверхности, повернутой к нему под прямым углом (или под углом, близким к прямому), звук, отразившись от такой поверхности, как круги на воде отражаются от берега, возвращается к источнику. Благодаря эху, говорящий может вместе с другими звуками слышать свою собственную речь, как бы задержавшуюся на некоторое время. Если источник звука находится на достаточном расстоянии от отражающей поверхности, а кроме источника звука поблизости нет никаких дополнительных звуковых источников, то эхо становится наиболее отчетливым. Эхо становится различимым на слух если интервал между прямой и отражённой звуковой волной составляет 50-60 мсек, что соответствует 15-20 метрам, которые звуковая волна проходит от источника и обратно, при нормальных условиях.

Под звуком понимают упругие волны, лежащие в пределах слышимости человеческого уха, в интервале колебаний от 16 гц до 20 кгц. Колебания с частотой ниже 16 гц называются инфра­звуком, свыше 20 кгц -ультразвуком.

Вода по сравнению с воздухом обладает большей плотностью и меньшей сжимаемостью. В связи с этим скорость звука в воде в четыре с половиной раза больше, чем в воздухе, и составляет 1440 м/сек. Частота колебаний звука (ню) связана с длиной вол­ны (лямбда) соотношением: c = лямбда-ню. Звук распространяется в воде без дисперсии. Скорость звука в воде изменяется в зависимости от двух параметров: плотности и температуры. Изменение темпера­туры на 1° влечет за собой соответственное изменение скорости звука на 3,58 м в секунду. Если проследить за скоростью рас­пространения звука от поверхности до дна, окажется, что сна­чала из-за понижения температуры она быстро убывает, достиг­нув на некоторой глубине минимума, а затем, с глубиной, начи­нает быстро возрастать за счет увеличения давления воды, которое, как известно, возрастает приблизительно на 1 атм на каждые 10 м глубины.

Начиная с глубины приблизительно 1200 м , где температура воды практически остается постоянной, изменение скорости зву­ка происходит за счет изменения давления. «На глубине, равной приблизительно 1200 м (для Атлантики), имеется минимум значения скорости звука; на больших глубинах благодаря уве­личению давления скорость звука опять увеличивается. Так как звуковые лучи всегда изгибаются к участкам среды, где их скорость наименьшая, то они концентрируются в слое с мини­мальной скоростью звука» (Красильников, 1954). Этот слой, открытый советскими физиками Л. Д. Розенбергом и Л.М. Бре­ховских, носит название «подводного звукового канала». Звук, попавший в звуковой канал, может распространяться без ослабления на огромные расстояния. Эту особенность необходи­мо иметь в виду при рассмотрении акустической сигнализации глубоководных рыб.

Поглощение звука в воде в 1000 раз меньше, чем в воздухе. Источник звука в воздухе мощностью в 100 квт в воде слы­шен на расстоянии до 15 км ; в воде источник звука в 1 квт слышен на расстоянии 30-40 км. Звуки различных частот по­глощаются неодинаково: сильнее всего поглощаются звуки высо­ких частот и мгнее всего - низкие звуки. Малое поглощение звука в воде позволило использовать его для гидролокации и сигнализации. Водные пространства наполнены большим коли­чеством различных звуков. Звуки водоемов Мирового океана, как показал американский гидроакустик Венц (Wenz, 1962), возникают в связи со следующими факторами: приливами и от­ливами, течениями, ветром, землетрясениями и цунами, инду­стриальной деятельностью человека и биологической жизнью. Характер шумов, создаваемых различными факторами, отли­чается как набором звуковых частот, так и их интенсивностью. На рис. 2 показана зависимость спектра и уровня давления зву­ков Мирового океана от вызывающих их факторов.

В различных участках Мирового океана состав шумов опре­деляют различные компоненты. Большое влияние при этом на состав звуков оказывают дно и берега.

Таким образом, состав и интенсивность шумов в различных участках Мирового океана исключительно разнообразны. Суще­ствуют эмпирические формулы, показывающие зависимость ин­тенсивности шумов моря от интенсивности вызывающих их факторов. Однако в практических целях шумы океана измеря­ются обычно эмпирически.

Следует отметить, что среди звуков Мирового океана наи­большей интенсивностью отличаются индустриальные звуки, со­здаваемые человеком: шум кораблей, тралов и т. д. По данным Шейна (1964), они по интенсивности в 10-100 раз превышают иные звуки Мирового океана. Однако, как видно из рис. 2, их спектральный состав несколько отличается от спектрального состава звуков, вызываемых другими факторами.

При распространении в воде звуковые волны могут отра­жаться, преломляться, поглощаться, испытывать диффракцию и интерференцию.

Встречая на своем пути препятствие, звуковые волны могут отразиться от него в случае, когда длина их волны (лямбда) меньше размера препятствия, или обогнуть (диффрагировать) его в слу­чае, когда их длина волны больше препятствия. В этом случае можно слышать то, что происходит за препятствием, не видя источника непосредственно. Падая на препятствие, звуковые волны в одном случае могут отразиться, в другом - проникнуть в него (поглотиться им). Величина энергии отраженной волны зависит от того, как сильно разнятся между собой так называ­емые акустические сопротивления сред «р1с1» и «р2с2», на гра­ницу раздела которых падают звуковые волны. Под акустиче­ским сопротивлением среды подразумевается произведение плотности данной среды р на скорость распространения звука с в ней. Чем больше разница акустических сопротивлений сред, тем большая часть энергии отразится от раздела двух сред, и наоборот. В случае, например, падения звука из воздуха, рс ко­торого 41, в воду, рс которой 150 000, он отражается согласно формуле:

В связи с указанным звук гораздо лучше проникает в твер­дое тело из воды, чем из воздуха. Из воздуха в воду звук хоро­шо проникает через кусты или камыши, выступающие над водной поверхностью.

В связи с отражением звука от препятствий и его волновой природой может происходить сложение или вычитание амплитуд звуковых давлений одинаковых частот, пришедших в данную точку пространства. Важным следствием такого сложения (ин­терференции) является образование стоячих волн при отраже­нии. Если, например, привести в колебание камертон, прибли­жая и удаляя его от стены, можно слышать из-за появления пуч­ностей и узлов в звуковом поле усиление и ослабление громко­сти звука. Обычно стоячие волны образуются в закрытых емко­стях: в аквариумах, бассейнах и пр. при относительно длительном по времени звучании источника.

В реальных условиях моря или другого естественного водо­ема при распространении звука наблюдаются многочисленные сложные явления, возникающие в связи с неоднородностью водной среды. Огромное влияние на распространение звука в естественных водоемах оказывают дно и границы раздела (вода - воздух), температурная и солевая неоднородность, гид­ростатическое давление, пузырьки воздуха и планктонные орга­низмы. Поверхности раздела вода - воздух и дно, а также не­однородность воды приводят к явлениям рефракции (искрив­ление звуковых лучей), или реверберации (многократное отра­жение звуковых лучей).

Пузырьки воды, планктон и другие взвеси способствуют по­глощению звука в воде. Количественная оценка этих многочис­ленных факторов в настоящее время еще не разработана. Учи­тывать же их при постановке акустических опытов необходимо.

Рассмотрим теперь явления, происходящие в воде при излу­чении в ней звука.

Представим себе звуковой источник как пульсирующую сфе­ру в бесконечном пространстве. Акустическая энергия, излучае­мая таким источником, ослабляется обратно пропорционально квадрату расстояния от его центра.

Энергия образующихся звуковых волн может быть охарак­теризована тремя параметрами: скоростью, давлением и смеще­нием колеблющихся частиц воды. Два последних параметра представляют особый интерес при рассмотрении слуховых спо­собностей рыб, поэтому на них остановимся более подробно.

По Гаррису и Бергельджику (Harris a. Berglijk, 1962), рас­пространение волн давления и эффекта смещения по-разному представлены в ближнем (на расстоянии менее одной длины волны звука) и дальнем (на расстоянии, более одной длины вол­ны звука) акустическом поле.

В дальнем акустическом поле давление ослабляется обратно пропорционально расстоянию от источника звука. При этом в дальнем акустическом поле амплитуды смещения прямо пропор­циональны амплитудам давления и связаны между собой фор­мулой:

где Р - акустическое давление в дин/см 2 ;

d - величина смещения частиц в см.

В ближнем акустическом поле зависимость между амплиту­дами давления и смещения иная:

где Р -акустическое давление в дин/см 2 ;

d - величины смещения частиц воды в см;

f - частота колебаний в гц;

рс - акустическое сопротивление воды, равное 150 000 г/см 2 сек 2 ;

лямбда - длина волны звука в м ; r - расстояние от центра пульсирующей сферы;

i = SQR i

Из формулы видно, что амплитуда смещения в ближнем аку­стическом поле зависит от длины волны, звука и расстояния от источника звука.

На расстояниях, меньших, чем длина волны рассматриваемо­го звука, амплитуда смещения убывает обратно пропорциональ­но квадрату расстояния:

где А - радиус пульсирующей сферы;

Д - увеличение радиуса сферы за счет пульсации; r - расстояние от центра сферы.

Рыбы, как будет показано ниже, обладают двумя разными типами приемников. Одни из них воспринимают давление, а другие - смещение частиц воды. Приведенные уравненияимеют поэтому большое значение для правильной оценки ответных реакций рыб на подводные источники звука.

В связи с излучением звука отметим еще два явления, свя­занные с излучателями: явление резонанса и направленности излучателей.

Излучение звука телом происходит в связи с его колебания­ми. Каждое тело имеет собственную частоту колебаний, опреде­ляемую размером тела и его упругими свойствами. Если такое тело приводится в колебание, частота которого совпадает с его собственной частотой, наступает явление значительного увели­чения амплитуды колебания - резонанс. Применение понятия о резонансе позволяет охарактеризовать некоторые акустические свойства излучателей и приемников рыб. Излучение звука в воду может быть направленным и ненаправленным. В первом случае звуковая энергия распространяется преимущественно в определенном направлении. График, выражающий простран­ственное распределение звуковой энергии данного источника звука, называют диаграммой его направленности. Направлен­ность излучения наблюдается в случае, когда диаметр излучате­ля значительно больше длины волны излучаемого звука.

В случае ненаправленного излучения звуковая энергия рас­ходится во все стороны равномерно. Такое явление происходит в случае, когда длина волны излучаемого звука превосходит диаметр излучателя лямбда>2А. Второй случай наиболее характерен для подводных излучателей низкой частоты. Обычно длины волн низкочастотных звуков бывают значительно больше размеров применяемых подводных излучателей. Такое же явление харак­терно и для излучателей рыб. В этих случаях диаграммы на­правленности у излучателей отсутствуют. В настоящей главе были отмечены лишь некоторые общие физические свойства зву­ка в водной среде в связи с биоакустикой рыб. Некоторые более частные вопросы акустики будут рассмотрены в соответствую­щих разделах книги.

В заключение рассмотрим применяемые различными автора­ми системы измерений звука. Звук может быть выражен его ин­тенсивностью, давлением или уровнем давления.

Интенсивность звука в абсолютных единицах измеряется или числом эрг/сек-см 2 , или вт/см 2 . При этом 1 эрг/сек=10 -7 вт.

Давление звука измеряется в барах.

Между интенсивностью и давлением звука существует зави­симость:

пользуясь которой можно переводить эти величины одну в дру­гую.

Не менее часто, особенно при рассмотрении слуха рыб, в связи с огромным диапазоном пороговых величин звуковое дав­ление выражают в относительных логарифмических единицах децибеллах, дб. Если звуковое давление одного звука Р , а друго­го Р о, то считают, что первый звук громче второго на k дб и вы­числяют его по формуле:

Большинство исследователей при этом за нулевой отсчет давле­ния звука Р о принимают пороговую величину слуха человека, равную 0,0002 бара для частоты 1000 гц.

Достоинством такой системы является возможность непо­средственного сопоставления слуха человека и рыб, недостат­ком - сложность сопоставления полученных результатов по зву­чанию и слуху рыб.

Фактические величины звукового давления, создаваемого ры­бами, на четыре - шесть порядков выше принятого нулевого уровня (0,0002 бара), а пороговые уровни слуха различных рыб лежат как выше, так и ниже условного нулевого отсчета.

Поэтому для удобства сопоставления звуков и слуха рыб американские авторы (Tavolga a. Wodinsky, 1963, и др.) поль­зуются другой системой отсчета.

За нулевой уровень отсчета принято давление звука в 1 бар, который на 74 дб выше ранее принятого.

Ниже приводится примерное соотношение обеих систем.

Фактические величины по американской системе отсчета в тексте помечены звездочкой.

  • Звуковые средства языка
  • § 8. Звуковые (или фонетические) средства языка подразделяются на
  • Часть I. Субстанциональная фонетика Сегментная фонетика артикуляционный аспект фонетических описаний
  • Устройство речевого аппарата
  • § 12. Человеческие органы, используемые для образования звуков, называются произносительными органами и составляют речевой (или произносительный) аппарат человека (см. Рис. 1, 2).
  • Звук речи. Гласные и согласные
  • Основные компоненты речепроизводства
  • § 14. С точки зрения физиологии и аэродинамики в процессе речепроизводства выделяется три основных функциональных компонента:
  • Инициация
  • § 15. Инициация – это создание в речевом тракте воздушного потока в результате движения одного из речевых органов, вызывающего увеличение или уменьшение давления в одном из участков речевого тракта.
  • Артикуляция
  • § 16. Как уже говорилось выше (см. § 11), в процессе артикуляции принято выделять три этапа:
  • Место артикуляции
  • Типы согласных по положению кончика языка
  • § 18. В зависимости от того, какая часть языка принимает участие в артикуляции переднеязычных18 согласных, в фонетике принято разграничивать апикальные, ламинальные и ретрофлексные согласные.
  • Способ артикуляции
  • Сонорные согласные
  • Дополнительная артикуляция
  • Фонация
  • § 24. За счет движения черпаловидных хрящей по горизонтальной оси может меняться конфигурация голосового прохода:
  • Механизм образования голоса
  • § 25. При физиологическом дыхании и при образовании глухих звуков голосовые связки разведены.
  • Артикуляционная классификация звуков русского языка
  • § 26. Фонетические классификации подразделяются на:
  • Согласные
  • § 27. В русском языке для классификации согласных обычно используют четыре признака:
  • Гласные
  • § 28. Гласные – это класс звуков, выделяемых на основании следующих свойств:
  • § 29. В традиционной фонетике русского языка классификация гласных задается в виде таблицы, основанной на трех признаках – это ряд, подъем и лабиализация (см. Таблицу 5).
  • § 31. Изменения фонетических единиц, связанные с влиянием контекста, могут быть вызваны:
  • Транскрипция
  • § 33. Транскрипцией называется фиксация звучащей речи графическими средствами. Транскрипция может быть
  • Фонетическая транскрипция
  • § 34. Исходя из целей фонетической транскрипции и условий ее применения, можно сформулировать два самых общих правила ее построения:
  • Транскрипция и экспериментальная фонетика
  • Транскрипция и орфоэпия
  • Русская фонетическая транскрипция
  • § 37. Транскрипция, применяемая в современной русистике, строится на базе кириллического алфавита, принятого в русской орфографии, с добавлением некоторых букв из других алфавитов.
  • Знаки фонетической транскрипции
  • § 38. В транскрипции используются два вида знаков:
  • Обозначение гласных звуков
  • § 39. Хотя звук в речи, как правило, не изолирован, за основной звукотип принимается то его звучание, которое ближе всего к изолированному произнесению.
  • Диактрические знаки для гласных
  • Гласные ударного слога
  • Гласные первого предударного слога.
  • § 43. В 1-м предударном слогепосле твердых согласныхпроисходит мена следующих звукотипов гласных:
  • Обозначение согласных звуков
  • § 47. В транскрипции используются все согласные буквы русского алфавита, кромещ, и сверх тогобуквыjиγ.
  • Диакритические знаки для согласных
  • Акустический аспект фонетических описаний Предмет акустической фонетики
  • § 49. В акустической фонетике изучаются аэродинамическая и акустическая фазы речи:
  • Физическая природа звука
  • Виды колебаний. Периодические и непериодическиеколебания
  • Объективные свойства звуков и их субъективные корреляты
  • Распространение звуковых волн
  • Простой (чистый) тон гармоническое колебание
  • § 54. Речевые звуки представляют собой комплексные колебания, т.Е. Сложнейшие сочетания простых или чистых тонов и/или шумов.
  • Комплексные звуки. Спектральное разложение Фурье
  • Резонанс
  • Акустическая теория речепроизводства
  • Форманта.F-картина
  • Основные способы изучения акустических свойств речи
  • Образование гласных звуков
  • Соотношение артикуляционных и акустических характеристик гласных
  • Акустические свойства согласных
  • § 65. Сонорные согласные по своей спектральной картине очень близки гласным и иногда отличаются от них только меньшей интенсивностью.
  • § 66. Шумные согласные.
  • Распространение звуковых волн

    § 53. Скорость звука (с ) в воздухе составляет около 350 м/сек. или 1260 км/ч. Скорость звука относительно постоянна 47 и не зависит от его интенсивности – громкие и тихие звуки "путешествуют" с одинаковой скоростью (но громкие дальше, так как интенсивность звука обратно пропорциональна квадрату расстояния от источника). Сгущение или разрежение воздуха, возникшее около источника звука, с течением времени распространяется в пространстве. Если источник звука  колеблющееся тело, звуковая волна за время, равное периоду колебаний тела Т, успевает пройти расстояние, равное произведению скорости звука на длительность периода. Это расстояние называется длиной звуковой волны (см. рис. 10) и обозначается греческой буквой "лямбда" ( = с * Т). Поскольку Т = 1/f (см. выше § 52), то эту формулу можно записать в виде =с/ f , то есть длина волны прямо пропорциональна скорости распространения волн в данной среде (с) и обратно пропорциональна частоте колебаний (f).

    Рисунок 10. Длина звуковой волны (КОК П1).

    Простой (чистый) тон гармоническое колебание

    § 54. Речевые звуки представляют собой комплексные колебания, т.Е. Сложнейшие сочетания простых или чистых тонов и/или шумов.

    Простой тон – это периодическое колебание, которое имеет только одну частоту колебания. Иначе простое периодическое колебание называется гармоническим .

    Звуков такого рода в природе не существует, хотя имеются звуки очень близкие чистому тону. К ним относится, например, звук, издаваемый камертоном. Если ударить по стеблю камертона, то его ножки начинают смещаться из нейтрального положения, затем возвращаются в исходное положение под воздействием силы эластичности, затем, вследствие инерции, продолжают движение через точку покоя, затем обратно и т.д. (см. рис. 1.2, 1.3; 3.2, 3.8). Силы инерции и эластичности противонаправленны и действуют в любой момент движения, при этом то одна сильнее, то другая.

    Рисунок 11. Схематическое изображение смещения усов камертона за полтора колебательных цикла. Положение 1 – состояние покоя; положение 2 – смещение внутрь под действием внешней силы, действие силы эластичности; положение 3 – возвращение в состояние покоя, действие силы эластичности уменьшается, а силы инерции увеличивается; положение 4 – смещение наружу, действие силы эластичности увеличивается, а силы инерции уменьшается; положение 5 – возвращение в состояние покоя, действие силы эластичности уменьшается, а силы инерции увеличивается (конец первого колебательного цикла); положение 6 – смещение внутрь, действие силы эластичности увеличивается, а силы инерции уменьшается; положение 7 – возвращение в состояние покоя, действие силы эластичности уменьшается, а силы инерции увеличивается.

    Рисунок 12. Схематическое изображение изменений воздушного давления, вызванных вибрацией камертона (1.2 или КОК П3)

    Движение камертона вызывает движение окружающих его молекул воздуха, которое можно сравнить с колебанием обыкновенных качелей (см. рис. 13). Движущиеся молекулы вызывают движение соседних молекул (как бы "подталкивают" их  см. рис. 14), в результате образуются последовательные сгущения и разрежения воздуха – звуковые волны. Звуковые волны распространяются концентрическими кругами, как волны от камня, брошенного в воду: сжатия и разрежения воздушной среды чередуются (см. рис. 15). Эти чередования давления во времени (в одной и той же точке) могут быть представлены в виде графика (осциллограммы) 48 , на котором время откладывается по горизонтальной оси, а давление – по вертикальной (см. рис. 16). Графиком простого периодического (гармонического) колебания является синусоида.

    Рисунок 13. Распространение звуковых волн.

    Каждая линия показывает положение 13 частиц воздуха в момент времени, несколько более поздний, чем линия сверху от данной. Неподвижные частицы изображены черточками, а движущиеся – стрелочками (чем жирнее стрелка, тем выше скорость движения) (1.3)

    Рисунок 14. Схематическое изображение десяти частиц воздуха в 14 разных моментов времени. Источник звука находится слева, звуковые волны распространяются слева направо, время изменяется сверху вниз. Заметьте, что хотя звуковые волны (отражающиеся в виде сближения трех частиц) смещаются слева направо, сами частицы почти не изменяют своего положения. (3.8)

    Рисунок 15. Звуковые волны, распространяющиеся от источника звука. (В идеале зоны сгущения и разрежения воздуха должны окружать источник звука в виде сфер, что невозможно показать на двухмерном рисунке). (3.9)

    Рисунок 16. Осциллограмма. Сверху звук изображен в виде движений частичек воздуха, вызванных источником звука с частотой колебаний 350 Гц. На диаграмме внизу видно, что пики воздушного давления расположены в метре друг от друга, то есть на пространство в 350 метров (которое звук проходит за одну секунду – см. § 53) приходится 350 пиков. (8.1)

    Вследствие действия силы трения точки наибольшего смещения частиц воздуха все больше приближаются к точке покоя: амплитуда колебания уменьшается, происходит затухание колебания (damping – см. рис. 17 и Б10), однако частота колебаний (количество полных циклов в единицу времени) остается постоянной.

    Рисунок 17. Осциллограмма затухающего колебания (2.2).

    Гармонические колебания могут различаться по частоте, амплитуде и фазе (см. рис. Б10 в Приложении Б или КОК П4).

    Одна и та же среда может передавать множество звуков одновременно. При этом колебания (например, при наличии нескольких источников) могут взаимодействовать друг с другом. Если их частота совпадает, то амплитуда просто суммируется (и это по-прежнему простой тон) 49 (см. рис. 18а).

    Рисунок 18. Результаты взаимодействия двух гармоник (сигнал 1 и сигнал 2), совпадающих по частоте, но различающихся по амплитуде (а) или фазе (b, с). Во всех случаях исходная частота остается прежней; изменяется амплитуда (а) или фаза (b). Результатом наложения двух гармоник, находящихся в противофазе, является отсутствие сигнала (с). (3.11)

    Предисловие.

    Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха.

    Теперь немного поразмышляем. Если, например, в горах упал камень, а рядом не было никого, кто мог бы слышать звук его падения, существовал звук или нет? На вопрос можно ответить и положительно и отрицательно в равной степени, так как слово «звук» имеет двоякое значение. Поэтому нужно условиться, что же считать звуком – физическое явление в виде распространения звуковых колебаний в воздухе или ощущения слушателя. Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное.

    В первом случае звук действительно представляет собой поток энергии, текущей подобно речному потоку. Такой звук может изменить среду, через которую он проходит, и сам изменяется ею. Во втором случае под звуком мы понимаем те ощущения, которые возникают у слушателя при воздействии звуковой волны через слуховой аппарат на мозг. Слыша звук, человек может испытывать различные чувства. Самые разнообразные эмоции вызывает у нас тот сложный комплекс звуков, который мы называем музыкой . Звуки составляют основу речи , которая служит главным средством общения в человеческом обществе. И, наконец, существует такая форма звука, как шум . Анализ звука с позиций субъективного восприятия более сложен, чем при объективной оценке.

    Распространение звука в пространстве и его воздействие на органы слуха человека.

    При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Любое движущееся тело, в том числе и колеблющееся, способно совершать работу, то есть оно обладает энергией. Следовательно, распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является колеблющееся тело, которое и излучает в окружающее пространство(вещество) энергию.

    Органы слуха человека способны воспринимать колебания с частотой от 15-20 герц до 16-20 тысяч герц. Механические колебания с указанными частотами называются звуковыми или акустическими(акустика – учение о звуке)

    Итак, звук – это волновой колебательный процесс, происходящий в упругой среде и вызывающий слуховое ощущение. Однако восприимчивость человека к звукам избирательна, поэтому мы говорим о слышимых и неслышимых звуках. Совокупность тех и других в общем напоминает спектр солнечных лучей, в котором есть видимая область – от красного до фиолетового цвета и две невидимые – инфракрасная и ультрафиолетовая. По аналогии с солнечным спектром звуки, которые не воспринимаются человеческим ухом, называются инфразвуками , ультразвуками и гиперзвуками .

    Что же происходит в органах слуха с различными системами и процессами преобразования слуха? Рассмотрим строение слухового аппарата человека.

    Наружное ухо состоит из ушной раковины и слухового прохода, соединяющих её с барабанной перепонкой. Основная функция наружного уха – определение направления на источник звука. Слуховой проход представляющий сужающуюся внутрь трубку длиной в два сантиметра, предохраняет внутренние части уха и играет роль резонатора. Слуховой проход заканчивается барабанной перепонкой – мембраной, которая колеблется под действием звуковых волн. Именно здесь, на внешней границе среднего уха, и происходит преобразование объективного звука в субъективный. За барабанной перепонкой расположены три маленьких соединённых между собой косточки: молоточек, наковальня и стремя, с помощью которых колебания передаются внутреннему уху.

    Там, в слуховом нерве, они преобразуются в электрические сигналы. Малая полость, где находится молоточек, наковальня и стремя, наполнена воздухом и соединена с полостью рта евстахиевой трубой. Благодаря последней поддерживается одинаковое давление на внутреннюю и внешнюю сторону барабанной перепонки. Обычно евстахиева труба закрыта, а открывается лишь при внезапном изменении давления(при зевании, глотании) для выравнивания его. Если у человека евстахиева труба закрыта, например, в связи с простудным заболеванием, то давление не выравнивается, и человек ощущает боль в ушах.

    Сила, действующая на барабанную перепонку, равна произведению давления на площадь барабанной перепонки.

    Но настоящие таинства слуха начинаются с овального окна. Звуковые волны распространяются в жидкости (перилимфе ), которой наполнена улитка. Этот орган внутреннего уха, по форме напоминающий улитку, имеет длину три сантиметра и по всей длине разделён перегородкой на две части. Звуковые волны доходят до перегородки, огибают её и далее распространяются по направлению почти к тому же месту, где они впервые коснулись перегородки, но уже с другой стороны.

    Перегородка улитки состоит из основной мембраны , очень толстой и тугой. Звуковые колебания создают на её поверхности волнообразную рябь, при этом гребни для разной частоты лежат в совершенно определённых участках мембраны.

    Механические колебания преобразуются в электрические в специальном органе(органе Корти ), размещённом над верхней частью основной мембраны.

    Над органом Корти расположена текториальная мембрана . Оба эти органа погружены в жидкость – эндолимфу и отделены от остальной части улитки мембраной Рейснера . Волоски, растущие из органа Корти почти пронизывают текториальную мембрану, и при возникновении звука они соприкасаются – происходит преобразование звука, теперь он закодирован в виде электрических сигналов.

    Заметную роль в усилении нашей способности к восприятию звуков играет кожный покров и кости черепа, что обусловлено их хорошей проводимостью. Например, если приложить ухо к рельсу, то движение приближающегося поезда можно обнаружить задолго до его появления.

    Свойства звука и его характеристики.

    Основные физические характеристики звука – частота и интенсивность колебаний. Они и влияют на слуховое восприятие людей.

    Периодом колебания называется время, в течение которого совершается одно полное колебание. Можно привести в пример качающийся маятник, когда он из крайнего левого положения перемещается в крайнее правое и возвращается обратно в исходное положение.

    Частота колебаний – это число полных колебаний(периодов)за одну секунду. Эту единицу называют герцем (Гц). Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон . В соответствии с принятой международной системой единиц, 1000 Гц называется килогерцем (кГц), а 1.000.000 – мегагерцем (МГц).

    Распределение по частотам: слышимые звуки – в пределах 15Гц-20кГц, инфразвуки – ниже 15Гц; ультразвуки – в пределах 1,5·10 4 – 10 9 Гц; гиперзвуки - в пределах 10 9 – 10 13 Гц.

    Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 кГц. Наибольшая острота слуха наблюдается в возраст 15-20 лет. С возрастом слух ухудшается.

    С периодом и частотой колебаний связано понятие о длине волны. Длиной звуковой волны называется расстояние между двумя последовательными сгущениями или разрежениями среды. На примере волн, распространяющихся на поверхности воды, - это расстояние между двумя гребнями.

    Звуки различаются также по тембру . Основной тон звука сопровождается второстепенными тонами, которые всегда выше по частоте(обертона). Тембр – это качественная характеристика звука. Чем больше обертонов накладывается на основной тон, тем «сочнее» звук в музыкальном отношении.

    Вторая основная характеристика – амплитуда колебаний . Это наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником – максимальное отклонение его в крайнее левое положение, либо в крайнее правое положение. Амплитуда колебаний определяет интенсивность(силу) звука.

    Сила звука, или его интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадь в один квадратный сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником в среде.

    С интенсивностью звука в свою очередь связана громкость . Чем больше интенсивность звука, тем он громче. Однако эти понятия не равнозначны. Громкость – это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковое по своей громкости слуховое восприятие. Каждый человек обладает своим порогом слышимости.

    Звуки очень большой интенсивности человек перестаёт слышать и воспринимает их как ощущение давления и даже боли. Такую силу звука называют порогом болевого ощущения.

    Шум. Музыка. Речь.

    С точки зрения восприятия органами слуха звуков, их можно разделить в основном на три категории: шум , музыка и речь . Это разные области звуковых явлений, обладающие специфической для человека информацией.

    Шум – это бессистемное сочетание большого количества звуков, то есть слияние всех этих звуков в один нестройный голос. Считается, что шум – это категория звуков, которая мешает человеку или раздражает.

    Люди выдерживают лишь определённую дозу шума. Но если проходит час – другой, и шум не прекращается, то появляется напряжение, нервозность и даже боль.

    Звуком можно убить человека. В средние века существовала даже такая казнь, когда человека сажали под колокол и начинали в него бить. Постепенно колокольный звон убивал человека. Но это было в средние века. В наше время появились сверхзвуковые самолёты. Если такой самолёт пролетит над городом на высоте 1000-1500 метров, то в домах лопнут стёкла.

    Музыка – это особое явление в мире звуков, но, в отличие от речи, она не передаёт точных смысловых или лингвистических значений. Эмоциональное насыщение и приятные музыкальные ассоциации начинаются в раннем детстве, когда у ребёнка ещё словесного общения. Ритмы и напевы связывают его с матерью, а пение и танцы являются элементом общения в играх. Роль музыки в жизни человека настолько велика, что в последние годы медицина приписывает ей целебные свойства.

    С помощью музыки можно нормализовать биоритмы, обеспечить оптимальный уровень деятельности сердечно-сосудистой системы.

    А ведь стоит лишь вспомнить, как солдаты идут в бой. Испокон веков песня была непременным атрибутом солдатского марша.

    Речь – важнейшее средство мышления и общения людей. Речь состоит из более или менее длительных шумов и тонов, составляющих группы. Овладение речью происходит еще в младенческом возрасте, когда ребёнок еще только слушает и пытается воспроизвести самые несложные и легко произносимые слова: «мама» и «папа».

    Законы распространения звука.

    К основным законам распространения звука относятся законы его отражения и преломления на границах различных сред, а также дифракция звука и его рассеяние при наличии препятствий и неоднородностей в среде и на границах раздела сред.

    На дальность распространения звука оказывает влияние фактор поглощения звука, то есть необратимый переход энергии звуковой волны в другие виды энергии, в частности, в тепло. Важным фактором является также направленность излучения и скорость распространения звука, которая зависит от среды и её специфического состояния.

    От источника звука акустические волны распространяются во все стороны. Если звуковая волна проходит через сравнительно небольшое отверстие, то она распространяется во все стороны, а не идёт направленным пучком. Например, уличные звуки, проникающие через открытую форточку в комнату, слышны во всех её точках, а не только против окна.

    Характер распространения звуковых волн у препятствия зависит от соотношения между размерами препятствия и длиной волны. Если размеры препятствия малы по сравнению с длиной волны, то волна обтекает это препятствие, распространяясь во все стороны.

    Звуковые волны, проникая из одной среды в другую, отклоняются от своего первоначального направления, то есть преломляются. Угол преломления может быть больше или меньше угла падения. Это зависит от того, из какой среды в какую проникает звук. Если скорость звука во второй среде больше, то угол преломления будет больше угла падения, и наоборот.

    Встречая на своём пути препятствие, звуковые волны отражаются от него по строго определённому правилу – угол отражения равен углу падения – с этим связано понятие эха. Если звук отражается от нескольких поверхностей, находящихся на разных расстояниях, возникает многократное эхо.

    Звук распространяется в виде расходящейся сферической волны, которая заполняет всё больший объём. С увеличением расстояния, колебания частиц среды ослабевают, и звук рассеивается. Известно, что для увеличения дальности передачи звук необходимо концентрировать в заданном направлении. Когда мы хотим, например, чтобы нас услышали, мы прикладываем ладони ко рту или пользуемся рупором.

    Большое влияние на дальность распространения звука оказывает дифракция , то есть искривление звуковых лучей. Чем разнороднее среда, тем больше искривляется звуковой луч и, соответственно, тем меньше дальность распространения звука.

    Инфразвук, ультразвук, гиперзвук.

    Инфразвук – упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 15-4- Гц; такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения, и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределённа. В настоящее время область его изучения простирается вниз примерно до 0,001 Гц. Таким образом диапазон инфразвуковых частот охватывает около 15-ти октав.

    Инфразвуковые волны распространяются в воздушной и водной среде, а также в земной коре(в этом случае их называют сейсмическими и их изучает сейсмология). К инфразвукам относятся также низкочастотные колебания крупногабаритных конструкций, в частности транспортных средств, зданий.

    Основная особенность инфразвука, обусловленная его низкой частотой, - это малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько Дб (децибелл). Из-за большой длины волны на инфразвуковых частотах мало и рассеяние звука в естественных средах; заметное рассеяние создают лишь очень крупные объекты – холмы, горы, крупные здания и др.. Вследствие малого поглощения и рассеяния инфразвук может распространяться на очень большие расстояния. Известно, что звуки извержения вулканов, атомных взрывов могут многократно обходить вокруг земного шара, сейсмические волны могут пересекать всю толщу Земли. По этим же причинам инфразвук почти невозможно изолировать, и все звукопоглощающие материалы теряют свою эффективность на инфразвуковых частотах.

    Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолётов, акустическое излучение реактивных двигателей и др.. Всякий очень громкий звук несёт с собой, как правило, и инфразвуковую энергию. Характерно, что излучением инфразвука сопровождается процесс речеобразования. Существенный вклад в инфразвуковое загрязнение среду дают транспортные шумы как аэродинамического, так и вибрационного происхождения.

    Установлено, что инфразвук с высоким уровнем интенсивности(120Дб и более) оказывает вредное влияние на человеческий организм. Ещё более вредными являются инфразвуковые вибрации, поскольку при их воздействии могут возникать опасные резонансные явления отдельных органов. Мощный инфразвук может вызывать разрушение и повреждение конструкций, оборудования. Вместе с тем инфразвук вследствие большой дальности распространения находит полезное практическое применение при исследовании океанической среды, верхних слоёв атмосферы, при определении места извержения или взрыва. Инфразвуковые волны, излучаемые при подводных извержениях, позволяют предсказать возникновение цунами.

    Ультразвук – упругие волны с частотами приблизительно от (1,5 – 2)·10 4 Гц (15 – 20 кГц) до 10 9 Гц(1ГГц); область частотных волн от 10 9 до 10 12 – 10 13 Гц принято называть гиперзвуком. По частоте ультразвук удобно подразделять на 3 диапазона: ультразвук низких частот(1,5·10 4 – 10 5 Гц), ультразвук средних частот(10 5 – 10 7 Гц), область высоких частот ультразвука(10 7 – 10 9 Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.

    По физической природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука, поэтому частотная граница между звуковыми и ультразвуковыми волнами условна. Однако благодаря более высоким частотам и, следовательно, малым длинам волн, имеет место ряд особенностей распространения ультразвука.

    Ввиду малой длины волны ультразвука, характер его определяется прежде всего молекулярной структурой среды. Ультразвук в газе, и в частности в воздухе, распространяется с большим затуханием. Жидкости и твёрдые тела представляют собой, как правило, хорошие проводники ультразвука, - затухание в них значительно меньше. Поэтому области использования ультразвука средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и в газах применяют ультразвук только низких частот.

    Ультразвуковым волнам было найдено больше всего применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см 2 .

    Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

    Гиперзвук – это упругие волны с частотами от 10 9 до 10 12 – 10 13 Гц. По физической природе гиперзвук ничем не отличается от звуковых и ультразвуковых волн. Благодаря более высоким частотам и, следовательно, меньшей, чем в области ультразвука, длинам волн значительно более существенными становятся взаимодействия гиперзвука с квазичастицами в среде – с электронами проводимости, тепловыми фононами и др.. Гиперзвук также часто представляют как поток квазичастиц – фононов.

    Область частот гиперзвука соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов(так называемые сверхвысокие частоты).Частота 10 9 Гц в воздухе при нормальном атмосферном давлении и комнатной температуре должна быть одного порядка с длиной свободного пробега молекул в воздухе при этих же условиях. Однако упругие волны могут распространяться в среде только при условии, что их длина волны заметно больше длины свободного пробега частиц в газах или больше межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах (в частности в воздухе) при нормальном атмосферном давлении гиперзвуковые волны распространяться не могут. В жидкостях затухание гиперзвука очень велико и дальность распространения мала. Сравнительно хорошо гиперзвук распространяется в твёрдых телах – монокристаллах, особенно при низкой температуре. Но даже в таких условиях гиперзвук способен пройти расстояние лишь в 1, максимум 15 сантиметров.

    План.

    1. Распространение звука в пространстве и его воздействие на органы слуха человека.

    2. Свойства звука и его характеристики.

    3. Шум. Музыка. Речь.

    4. Законы распространения звука.

    5. Инфразвук, ультразвук, гиперзвук.

    Список использованной литературы.

    1.Хорбенко Иван Григорьевич: «За пределами слышимого»;2-е издание,1986г..

    2.Клюкин Игорь Иванович: «Удивительный мир звука»;2-е издание, 1986г..

    3. Кошкин Н. И., Ширкевич М.Г.: «Справочник по элементарной физике»; 10-е изд., 1988г.

    4. Интернет: онлайн-библиотека Мошкова( www . lib . ru ). Научно-популярная литература, Физика – онлайн-энциклопедия в 5 томах, «З», ультразвук, инфразвук, гиперзвук. http://www.physicum.narod.r u

    5. Рисунок – интернет:

    http://www.melfon.ru/TOMSK/kvz.htm

    Министерство Культуры Российской Федерации

    Санкт-Петербургский Государственный Университет Кино и Телевидения

    Вечернее отделение.

    Контрольная работа

    по дисциплине Введение в специальность

    «Исследование звука. Основные свойства слуха

    человека».

    Выполнила студентка группы № 7252:

    Принял декан вечернего отделения, доцент:

    Тарасов Б.Н.

    Санкт-Петербург 2002г.