Меню Рубрики

Потенциал действия кратко. Потенциал действия, его фазы

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

При действии порогового или сверхпорогового раздражителя изменяется проницаемость клеточной мембраны для ионов в различной степени. Для ионов Na она повышается в 400–500 раз, и градиент нарастает быстро, для ионов К – в 10–15 раз, и градиент развивается медленно. В результате движение ионов Na происходит внутрь клетки, ионы К двигаются из клетки, что приводит к перезарядке клеточной мембраны. Наружная поверхность мембраны несет отрицательный заряд, внутренняя – положительный.

Возбуждение нервной клетки под действием химического сигнала (реже электрического импульса) приводит к возникновению потенциала действия . Это означает, что потенциал покоя -60 мВ скачком изменяется на +30 мВ и спустя 1 мс принимает исходное значение. Процесс начинается с открывания Nа + -канала (1). Ионы Na + устремляются в клетку (по градиенту концентрации), что вызывает локальное обращение знака мембранного потенциала (2). При этом Na + -каналы тотчас закрываются, т. е. поток ионов Na + в клетку длится очень короткое время (3). В связи с изменением мембранного потенциала открываются (на несколько мс) потенциал-управляемые К + -каналы (2) и ионы К + устремляются в обратном направлении, из клетки. В результате мембранный потенциалпринимает первоначальное значение (3), и даже превышает на короткое времяпотенциал покоя (4). После этогонервная клетка вновь становится возбудимой.

За один импульс через мембрану проходит небольшая часть ионов Na + и К + , и концентрационные градиенты обоихионов сохраняются (в клетке выше уровень К + , а вне клетки выше уровень Na +). Поэтому по мере получения клеткойновых импульсов процесс локального обращения знака мембранного потенциала может повторяться многократно. Распространение потенциала действия по поверхности нервной клетки основано на том, что локальное обращениемембранного потенциала стимулирует открывание соседних потенциал-управляемых ионных каналов, в результате чего возбуждение распространяется в виде деполяризационной волны на всю клетку.

Восходящая ветвь графика:

    потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

    нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

    критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

    самоусиливающаяся круто нарастающая деполяризация;

    переход нулевой отметки (0 мВ) – смена полярности мембраны;

    «овершут» – положительная поляризация (инверсия , или реверсия, заряда мембраны);

    пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

    реполяризация – восстановление прежней электроотрицательности мембраны;

    переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

    переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

    следовые процессы (следовая деполяризация или следовая гиперполяризация);

    восстановление потенциала покоя – норма (–70 мВ).

Восстанавливается за счёт диффузии из клетки положительно заряженных ионов калия, концентрация которых в окружающей среде также значительно ниже внутриклеточной.

Энциклопедичный YouTube

    1 / 5

    Электротонические потенциалы и потенциалы действия

    Потенциал действия кардиомиоцитов

    Потенциал действия рабочего миокарда

    Потенциал действия в клетках-пейсмейкерах

    Мембранные потенциалы - Часть 1

    Субтитры

    В предыдущем видеоролике речь шла о том, как клетка использует натрий-калиевый насос и АТФ для поддержания разницы потенциалов между внутренним пространством клетки и внешней средой. В целом, внешняя среда более положительно заряжена, чем внутренняя. У нас имеется разница потенциалов -70 милливольт между внутренней и внешней средой. Это значение со знаком минус, поскольку внешняя среда более положительно заряжена. Если из менее положительного значения вычесть более положительное значение, то у вас получится отрицательное значение порядка -70. Это утверждение является основой для понимания того, каким образом нейроны передают сигналы в организме. И чтобы лучше объяснить это, я хочу дать вам еще одно понятие дополнительно. После этого вы поймете, в чем состоит принцип передачи сигнала нейроном в реальной жизни. И более того, вам станет понятно, для чего им необходимы эти миелиновые оболочки и перехваты Ранвье, и для чего нужны все эти дендриты. Я надеюсь, у вас сложится целостная картина. Итак, есть два пути, которыми может перемещаться потенциал. Два пути передачи сигнала. Назовем это так.. Я не знаю какое слово подходит больше. Итак, первый путь - электротонический. Звучит очень сложно, но вы убедитесь, что в основе лежит очень простая идея. Сначала запишу сам термин. Электротонический... электротонический потенциал. И второе, на чем я собираюсь остановиться, это потенциал действия. У обоих из них имеются положительные и отрицательные стороны в контексте способности передачи сигнала. Мы будем говорить о них в рамках представлений о клетке и клеточной мембране. Давайте теперь со всем этим подробно разберемся. Итак, я изображу мембрану клетки. Условимся, что это нервная клетка, или нейрон, ведь мы обсуждаем именно нервные клетки. Мы знаем, что более положительный заряд находится на внешней стороне.. Мы также знаем, что на внешней стороне имеется большое количество натрия, и Его количество на внешней стороне больше, чем на внутренней стороне. Здесь его может быть совсем немного. И мы знаем, что внутри содержание калия намного больше, чем снаружи, однако мы также знаем, что внешняя сторона имеет больший положительный заряд, чем внутренняя, поскольку наш натрий-калиевый насос будет выкачивать три иона натрия на каждые два иона калия, которые он закачивает внутрь. И в последнем видеоролике я говорил вам, что существуют структуры, которые называются натриевыми воротами. Ворота для ионов натрия. Вот это все ионы. Они обладают зарядом. И теперь допустим, что имеются некоторые обстоятельства, некоторые стимулы - давайте я отмечу их. Опущусь немного ниже. Вот здесь расположены наши ворота для ионов натрия. Они находятся в закрытом положении, однако давайте скажем, что нечто вызывает их открытие. Мы поговорим, возможно, в этом видеоролике, или в этом и следующем видеороликах о различных вещах, которые могут вызывать их открытие. Определенный тип стимула вызывает их открытие. На самом деле, существует целый ряд различных стимулов. В общем, допустим, они открылись. Что же происходит вслед за их открытием? Мы открыли их, точнее это сделал определенный стимул - что же произойдет дальше? У нас имеется более положительный заряд на внешней стороне, чем на внутренней стороне, поэтому положительно заряженные объекты захотят проникнуть внутрь. А это натриевые ворота, поэтому только натрий может проникать через них. Это, своего рода, изогнутая белковая структура, через которую могут проникать только ионы натрия. И кроме всего прочего, у нас намного больше натрия снаружи, чем внутри. Поэтому градиент диффузии будет способствовать тому, что натрий будет проходить по нему. А в результате того, что ионы натрия заряжены положительно, и внешняя среда также более положительно заряжена, они будут стремиться покинуть эту положительно заряженную среду. Итак, если вы откроете эти ворота, то у вас будет большое количество ионов натрия, готовых к проникновению. Нарисую тут их побольше. И теперь, что должно произойти, если мы будем двигаться дальше по мембране? Давайте увеличим изображение. Итак, давайте представим, что наша мембрана. А это наши открытые ворота, они по какой-то причине открылись, и большое количество ионов натрия проникает внутрь. И все это становится более положительно заряженным. Давайте представим, что здесь у нас есть вольтметр. Мы измеряем разницу потенциалов между внутренней поверхностью мембраны и внешней поверхностью. Давайте я изображу небольшую схему. Я нарисую схему вот здесь на моем вольтметре. И это будет разница потенциалов - или мы можем назвать ее мембранным вольтажем или разницей вольтажа между двумя поверхностями мембраны - и давайте обозначим эту ось как время. Представим, что мы еще не открывали эти ворота. То есть это состояние покоя. Наши натрий-калиевые насосы продолжают работать. Частицы просачиваются назад и вперед, однако соотношение удерживается на значении минус 70 милливольт. Итак, вот здесь у нас минус 70 милливольт. И теперь, как только эти ворота, которые располагаются в некоторых других отделах клетки, открываются, что же происходит? Допустим, при этом, что открываются только эти ворота. Итак, здесь внезапно образуется более положительный заряд. Итак, положительные заряды, здесь уже есть - поэтому другие положительные заряды, обусловленные ионами натрия или калия, будут стремиться быть как можно дальше от этой точки, потому что в этой зоне отсутствует поток положительных ионов. То есть, она менее положительно заряжена, по сравнению с вот этим участком. У нас тут имеется некоторое количество ионов калия, и возможно, некоторое количество ионов натрия. Все они будут стремиться быть как можно дальше от того места, где открылись ворота. Заряд будет стремиться распространиться как можно дальше. И как только это происходит, как только мы открываем эти ворота, у нас происходит смещение положительного заряда в этом направлении. Это происходило при минус 70 милливольтах. Итак, некоторое количество положительного заряда уходит. Все это происходит очень быстро. Практически немедленно после этого, заряд становится менее отрицательным, или более положительным. Разница потенциалов между этим и этим участками становится меньше. Это соответствует данной точке на графике. И теперь, если мы берем эту точку, если мы проделаем то же самое - если мы измерим вольтаж в этой точке вот здесь, то возможно, он будет минус 70 милливольт, а некоторое время спустя, положительный заряд начнет оказывать свое влияние и заряд здесь станет более положительным, при этом эффект будет уменьшаться. Поскольку эти положительные заряды будут распространяться во всех направлениях. В результате эффект как бы разрежается. То есть он становится менее выраженным. И заряд здесь станет менее положительным. Итак, электротонический потенциал происходит в одной точке клетки, когда ворота открываются и заряд начинает распространяться внутрь, и начинает воздействовать на потенциал в других отделах клетки. Однако положительным моментом является то, что он очень быстрый. По мере того, как это происходит... По мере поступления в клетку, он становится все более и более положительным, однако чем дальше он проникает, тем эффект все больше рассеивается... все больше рассеивается по мере увеличения расстояния. И если вам важна скорость, то вам потребуется именно этот электротонический потенциал. Как только это происходит, его воздействию подвергаются все остальные отделы клетки, однако если вы хотите, чтобы это изменение потенциала распространялось на более длинные расстояния - к примеру, давайте решим, что если мы прошли весь путь до этой точки нейрона и хотим теперь измерить его, то он не будет оказывать какого-либо влияния. Возможно, несколько позднее, однако этот потенциал не будет иметь никакого влияния, поскольку заряд рассеивается по мере того как увеличивается заряд во всей клетке целиком. Итак, это влияние вдали от первоначальной локализации, где произошло открытие ворот. Оно будет существенно меньше. Расстояние на самом деле не идет на пользу действию. И теперь давайте постараемся решить, что будет происходить с потенциалом действия. Из названия ясно, что в этом случае будет больше действия. Итак, давайте начнем с той же ситуации. У нас имеются натриевые ворота, которые открываются под действием определенных стимулов. И сейчас я изображу две мембраны. Вот здесь внешняя сторона. И, соответственно, это - внутренняя сторона. Давайте я изображу - возможно, мы уже сталкивались с этим - но сейчас мы разберем это более подробно. Допустим, это - аксон, и давайте я нарисую здесь еще одни натриевые ворота. Они находятся совсем рядом. И они должны быть трансформирующимися. Итак, они трансформируются, а здесь у меня располагаются еще одни натриевые ворота. Нарисую и их. Но не думаю, что нужно рисовать их в большом количестве. Нужно изобразить одно скопление, чтобы вы понимали, что происходит. Давайте я нарисую еще одни калиевые ворота. Хорошо. Все ворота нарисованы. Давайте договоримся, что они все изначально закрыты. Итак, они все находятся в закрытом положении. И теперь на эти натриевые ворота воздействует стимул. И они открываются. Да, допустим, вот эти ворота открываются. Они стимулируются чем-то и в результате раскрываются. Давайте решим, что конкретно вот эти натриевые ворота открываются под действием определенного стимула, который имеет определенный вольтаж. Пусть ворота открываются когда они достигают значения минус 55 милливольт. Запишу это. И когда они находятся в состоянии покоя, разница потенциалов между внутренним пространством клетки и ее внешним пространством составляет минус 70 милливольт, и они поэтому не открываются. Они остаются закрытыми, однако, если в определенных обстоятельствах этот заряд становится достаточно положительным, чтобы обеспечить значение минус 55 милливольт, эти ворота открываются. Давайте запишем несколько правил, которые определяют то, что происходит с этими воротами. Они закрываются - и все это просто приблизительные числа, главная цель заключается в том, чтобы вы уловили основную идею. Пусть они закрываются при при плюс 35 милливольтах. А наши калиевые ворота открываются при плюс 40 милливольтах, просто чтобы вы уловили основную идею. А закрываются калиевые ворота, при минус 80 милливольтах. Пусть будет так. И что же происходит в результате? Давайте решим, что, по какой-то причине, вольтаж здесь становится минус 55 милливольт. Я сейчас изображу схему, по аналогии с тем, как я это делал раньше. Итак, мне нужно немного пространства, чтобы нарисовать свою схему. Итак, схема та же. Вот это вольтаж мембраны. Хорошо. А вот это время. И давайте представим, что мы измеряем вольтаж - давайте решим, что это мембранный вольтаж вблизи натриевых ворот, расположенных вот здесь. Итак, мы измеряем вольтаж с обеих сторон мембраны. И если отсутствует стимуляция, то мы получаем значение порядка минус 70 милливольт - и вдруг какой-то стимул, по какой-то причине, делает этот участок более положительно заряженным. Возможно, это определенный тип электротонического эффекта, который делает этот участок более положительно заряженным. Возможно, здесь имеются определенные положительные заряды. И, в итоге, этот участок становится более положительно заряженным. Затем натрий-калиевые насосы выкачивают ионы наружу, в результате чего не достигается пороговое значение минус 55 милливольт, в результате ничего не происходит, согласны? Однако когда имеется другой электротонический стимул, или, может быть, несколько, здесь концентрируется большое количество положительных зарядов, в результате чего достигается значение минус 55 милливольт. Запомните, что как только появляется положительный заряд, все становится менее отрицательно заряженным. И разница потенциалов становится меньше. И когда мы достигаем значения минус 55 милливольт - ворота открываются. Вот они были закрыты прежде. Они были закрыты при значении минус 70 милливольт. Итак, давайте я запишу вот здесь. В данной точке, наши натриевые ворота открываются. И теперь что же происходит, когда наши натриевые ворота открываются? Когда они открываются - мы уже наблюдали это раньше - все положительно заряженные ионы натрия направляются вот сюда, как в направлении электрического градиента, так и градиента диффузии, и проникают внутрь клетки. Здесь снаружи имеется такое большое количество натрия, здесь настолько положительный заряд, что они просто стремятся проникнуть внутрь. И как только они достигают этого порога, даже несмотря на то, что это может произойти только при минус 55 или, возможно, при минус 50 милливольтах, в результате ворота открываются и весь наш положительный заряд поступает внутрь клетки. И разница потенциалов становится намного более положительной. Хорошо, теперь дальше. Они продолжают поступать внутрь, и заряд становится все более и более положительным, и по мере того как он становится более положительным, ворота закрываются при значении плюс 35 милливольт. Сейчас освобожу побольше места, чтобы продолжить. Итак, давайте представим, что мы находимся вот здесь - давайте решим, что вот здесь у нас плюс 35 милливольт. Ворота закрываются, и в то же время, все это, что я только что удалил - я установил на значении плюс 40 милливольт, хотя нет, плюс 35, просто чтобы поддержать свою идею. Итак, давайте представим, что при плюс 35 милливольтах наши натриевые ворота открываются. Что же происходит в результате? Внезапно мы оказываемся при плюс 35, или, возможно, при плюс 40 милливольтах вот так - давайте решим, что плюс 40, я полагаю, вы уловили идею так или иначе, поэтому, давайте решим, что плюс 40 . Итак, при плюс 40, эти ворота закрываются. Больше никакие положительно заряженные ионы не поступают внутрь, однако теперь у нас внутри заряд более положительный, по меньшей мере, локально в данной точке на мембране, чем снаружи. И эти ворота открываются. Итак, в результате наши калиевые ворота открываются. K-плюс ионные ворота открываются. И что же происходит теперь, когда они открываются? У нас имеются здесь все эти ионы натрия. Мы уже видели на примере натрий- калиевого насоса, что калий - все эти ионы калия у нас расположены вот здесь. Мы видели на примере натрий-калиевого насоса, что он увеличивает концентрацию натрия на внешней стороне, а концентрация калия при этом выше внутри клетки. И теперь, в дополнении к этому положительному заряду в плюс 40 милливольт, у нас также имеется более положительный заряд на внутренней поверхности мембраны. Итак, они открываются. И эти частицы хотят уйти, поскольку здесь снаружи меньше ионов калия. И они хотят идти по своему градиенту концентрации. На этой стороне также имеется большой положительный заряд. Примерно плюс 40 милливольт. Ионы хотят высвободиться. Они начинают выходить из клетки. Итак, положительные заряды начинают покидать клетку изнутри наружу. И мы снова становимся менее положительно заряженными. Давайте я запишу, что же здесь происходит. Итак, в данной точке наши натриевые ворота закрываются, а открываются калиевые ворота. Одни закрылись, другие открылись. После этого положительные заряды начинают выходить из клетки повторно, и возможно, я несколько сгустил краски, потому что они закроются, вероятно, когда мы уже получим минус 80 милливольт. Допустим, калиевые ворота закроются при -80. И затем наш натрий-калиевый насос может вернуть нас обратно к нашему значению минус 70 милливольт. Итак, вот что происходит на данном участке клетки, в непосредственной близости от первых натриевых ворот. Однако что же происходит, в целом? По мере того как здесь формируется очень пложительный заряд - мы приблизились к значению 40 милливольт вот здесь. Мы достигли 40 милливольт на данном участке клетки. Как вы уже практически проследили это на коротком расстоянии электротонического потенциала, этот участок становится более положительно заряженным. Он становится более положительно заряженным. Эти положительные заряды начинают распространяться туда, где заряд менее положительный. То есть он становится более положительным. Он был при минус 70 милливольт, однако он становится более положительным. Постепенно он увеличивается до минус 65, минус 60, минус 55 и затем «Бам!». Опять происходит стимуляция. И эти ворота снова открываются. Эти ворота опять открываются. Натрий опять поступает внутрь. И если вы хотите проследить за этими воротами, за разницей потенциалов того, что проходит через них, все это происходит как только натрий начинает поступать через эти первые ворота, через вторые ворота - он потенцируется здесь, потому что вторые ворота расположены чуть позже по времени - потому что весь этот поток проходит чуть левее от него, его потенциал увеличивается. Он потенцируется, и с ним происходит снова то же самое. Когда натрий поступает сюда, среда становится положительно заряженной, и это приводит к тому, что клетка, вольтаж вокруг, заряд становятся несколько более положительными, и это запускает открытие следующих натриевых ворот и затем происходит все то же самое, повторяется тот же цикл. Затем калиевые ворота открываются, чтобы отрицательный заряд вернулся, однако к тому времени, как это происходит, среда становится уже достаточно положительно заряженной, чтобы запустить еще одни натриевые ворота. Итак, одни за другими, эти натриевые ворота открываются и закрываются, таким образом передается информация, происходит передача этого изменения потенциала. Итак, что же происходит здесь? Итак, это происходит медленнее и с привлечением энергии. Это происходило - электротонический потенциал - очень быстро. А этот процесс медленный. Потенциал действия более медленный. Я не имею в виду, что он совсем медленный. Он медленнее, потому что он должен задействовать все эти открывания и закрывания ворот, и он также требует энергии. Запишу это. И вы также должны постоянно обеспечивать энергией потенциал в нашей клетке, и использовать ваши натрий-калиевые насосы, которые находятся в активном состоянии. Но это хорошо. Положительной стороной является то, что с его помощью хорошо охватывается расстояние. Это тоже запишем. Мы наблюдали на примере электротонического потенциала, что по мере того, как мы продвигаемся все дальше и дальше от того места, где произошла стимуляция, изменение потенциала становится все более рассеянным. Оно экспоненциально угасает. Оно становится все более рассеянным по мере того, как мы продвигаемся все дальше, что не очень хорошо для больших расстояний. Это же может продолжаться бесконечно, потому что каждый раз когда стимулируются новые ворота, и эти ворота продолжают обеспечивать поток ионов, входящих ионов, а также тех, которые делают так, что среда становится несколько более отрицательно заряженной. Вслед за этим происходит открытие следующих ворот. И это позволяет очень эффективно проходить длинные расстояния. И теперь у нас действительно есть основа для понимания того, что происходит в нейроне, и я продолжу эту тему в следующем видеоролике, где покажу вам, как электротонические потенциалы и потенциалы действия могут объединяться для обеспечения прохождения сигнала по нейрону.

Фазы потенциала действия

  1. Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).
  2. Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).
  3. Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).
  4. Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Общие положения

Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемую потенциалом покоя . Если ввести внутрь живой клетки электрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся и катионы , и анионы . Снаружи - на порядок больше ионов натрия , кальция и хлора , внутри - ионов калия и отрицательно заряженных белковых молекул, аминокислот, органических кислот, фосфатов , сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий через синапс или путём диффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела к аксонам и дендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны - аксонном холмике, так что потенциал действия не распространяется на дендриты).

Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионо-специфичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количество потенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечивается градиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называют потенциалом действия (в специальной литературе обозначается ПД).

Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой же амплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазу относительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

Распространение потенциала действия

По немиелинизированным волокнам

По ходу ПД каналы переходят из состояния в состояние: у Na + каналов основных состояний три - закрытое, открытое и инактивированное (в реальности дело сложнее, но этих трёх достаточно для описания), у K + каналов два - закрытое и открытое.

Поведение каналов, участвующих в формировании ПД, описывается через проводимость и высчиляется через коэффициенты переноса (трансфера).

Коэффициенты переноса были выведены Ходжкином и Хаксли.

Проводимость для калия G K на единицу площади

G K = G K m a x n 4 {\displaystyle G_{K}=G_{Kmax}n^{4}}
d n / d t = α n (1 − n) − β n n {\displaystyle dn/dt=\alpha _{n}(1-n)-\beta _{n}n} ,
где:
α n {\displaystyle \alpha _{n}} - коэффициент трансфера из закрытого в открытое состояние для K+ каналов ;
β n {\displaystyle \beta _{n}} - коэффициент трансфера из открытого в закрытое состояние для K+ каналов ;
n {\displaystyle n} - фракция К+ каналов в открытом состоянии;
(1 − n) {\displaystyle (1-n)} - фракция К+ каналов в закрытом состоянии
Проводимость для натрия G Na на единицу площади

рассчитывается сложнее, поскольку, как уже было сказано, у потенциал-зависимых Na+ каналов, помимо закрытого/открытого состояний, переход между которыми описывается параметром m {\displaystyle m} , есть ещё инактивированное/не-инактивированное состояния, переход между которыми описывается через параметр h {\displaystyle h}

G N a = G N a (m a x) m 3 h {\displaystyle G_{Na}=G_{Na(max)}m^{3}h}
d m / d t = α m (1 − m) − β m m {\displaystyle dm/dt=\alpha _{m}(1-m)-\beta _{m}m} , d h / d t = α h (1 − h) − β h h {\displaystyle dh/dt=\alpha _{h}(1-h)-\beta _{h}h} ,
где: где:
α m {\displaystyle \alpha _{m}} - коэффициент трансфера из закрытого в открытое состояние для Na+ каналов ; α h {\displaystyle \alpha _{h}} - коэффициент трансфера из инактивированного в не-инактивированное состояние для Na+ каналов ;
β m {\displaystyle \beta _{m}} - коэффициент трансфера из открытого в закрытое состояние для Na+ каналов ; β h {\displaystyle \beta _{h}} - коэффициент трансфера из не-инактивированного в инактивированное состояние для Na+ каналов ;
m {\displaystyle m} - фракция Na+ каналов в открытом состоянии; h {\displaystyle h} - фракция Na+ каналов в не-инактивированном состоянии;
(1 − m) {\displaystyle (1-m)} - фракция Na+ каналов в закрытом состоянии (1 − h) {\displaystyle (1-h)} - фракция Na+ каналов в инактивированном состоянии.

Нервный импульс - это движущаяся волна изменений в состоянии мембраны. Она включает в себя структурные изменения (открытие и закрытие мембранных ионных каналов), химические (изменяющиеся трансмембранные потоки ионов) и электрические (изменения электрического потенциала мембраны: деполяризацию, позитивную поляризацию и реполяризацию). © 2012-2019 Сазонов В.Ф..

Можно сказать короче:

"Нервный импульс - это волна изменений, движущаяся по мембране нейрона". © 2012-2019 Сазонов В.Ф..

Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

Потенциал действия - это электрическая характеристика (электрическая составляющая) нервного импульса.

Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.

Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно). (Кликните на изображение слева, чтобы увидеть анимацию.)

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

1. Аксонный холмик - главный породитель нервных импульсов.

Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.

Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала генераторный потенциал, а затем и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

    Электрические явления – развитие потенциала действия.

    Химические явления – движение ионных потоков.

    Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию. Сначала деполяризация идет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно –50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс – реполяризация , т.е. восстановление отрицательной поляризации мембраны.

Кратко опишем электрические явления во время течения потенциала действия:

Восходящая ветвь графика:

    потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

    нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

    критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

    самоусиливающаяся круто нарастающая деполяризация;

    переход нулевой отметки (0 мВ) – смена полярности мембраны;

    «овершут» – положительная поляризация (инверсия, или реверсия, заряда мембраны);

    пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

    реполяризация – восстановление прежней электроотрицательности мембраны;

    переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

    переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

    следовые процессы (следовая деполяризация или следовая гиперполяризация);

    восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

2. Ионные потоки

Образно можно сказать, что заряженные ионы – это и есть создатели электрических потенциалов в нервных клетках. Для многих людей звучит странно утверждение, что вода не проводит электрический ток. Но на самом деле это так. Сама по себе вода является диэлектриком, а не проводником. В воде электрический ток обеспечивают не электроны, как в металлических проводах, а заряженные ионы: положительные катионы и отрицательные анионы. В живых клетках основную «электрическую работу» выполняют катионы, так как они более подвижны. Электрические токи в клетках – это потоки ионов.

Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

3. Ионные каналы

Все три стороны процесса возбуждения – электрическая, химическая и структурная – необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .

На молекулярно-структурном уровне происходит открытие мембранных натриевых каналов. Сначала этот процесс идет пропорционально силе внешнего воздействия, а затем становится просто «неудержимым» и массовым. Открытие каналов обеспечивает вход натрия в клетку и вызывает деполяризацию. Затем, примерно через 2-5 миллисекунд, происходит их автоматическое закрытие . Это закрытие каналов резко обрывает движение ионов натрия внутрь клетки, и, следовательно, обрывает нарастание электрического потенциала. Рост потенциала прекращается, и на графике мы видим спайк. Это вершина кривой на графике, дальше процесс пойдет уже в обратном направлении. Конечно, очень интересно разобраться в том, что натриевые каналы имеют двое ворот, и открываются они активационными воротами, а закрываются инактивационными, но это следует обсуждать ранее, в теме «Возбуждение». Мы на этом останавливаться не будем.

Параллельно в открытием натриевых каналов с небольшим отставанием во времени идет нарастающее открытие калиевых каналов. Они медлительные по сравнению с натриевыми. Открытие дополнительных калиевых каналов усиливает выход положительных ионов калия из клетки. Выход калия противодействует «натриевой» деполяризации и вызывает восстановление полярности (восстановление электроотрицательности). Но натриевые каналы опережают калиевые, они срабатывают примерно в 10 раз быстрее. Поэтому входящий поток положительных ионов натрия в клетку опережает компенсирующий выход ионов калия. И поэтому деполяризация развивается опережающими темпами по сравнению с противодействующей ей поляризацией, вызванной утечкой ионов калия. Вот почему, пока натриевые каналы не закроются, восстановление поляризации не начнется.

Пожар как метафора распространяющегося возбуждения

Для того чтобы перейти к пониманию смысла динамичного процесса возбуждения, т.е. к пониманию его распространения вдоль мембраны, надо представить себе, что описанные нами выше процессы захватывают сначала ближайшие, а затем все новые, все более и более отдаленные участки мембраны, пока не пробегут по всей мембране полностью. Если вы видели «живую волну», которую устраивают болельщики на стадионе за счет вставания и приседания, то вам легко будет представить себе мембранную волну возбуждения, которая образуется за счет последовательного протекания в соседних участках трансмембранных ионных токов.

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

Можно ли «погасить» волну распространяющегося возбуждения?

Вряд ли нервная клетка способна «погасить» этот начавшийся «пожар» возбуждения. Поэтому первый способ подходит только для искусственного вмешательства в работу нейронов (например, в лечебных целях). Но вот «залить водичкой» некоторые участки и поставить блок распространению возбуждения, оказывается, вполне возможно.

© Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).

Раздражители

По природе раздражители подразделяют на:
• физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
• химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
• информационные (голосовые команды, условные знаки, условные стимулы).

По биологическому значению раздражители подразделяют на:
• адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
• неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

Возбуждение как активная реакция клетки на раздражитель

Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
• энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
• сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

Возбудимая клетка может находиться в двух дискретных состояниях:
• состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
• состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

В организме существует 3 типа возбудимых клеток:
• нервные клетки (возбуждение проявляется генерацией электрического импульса);
• мышечные клетки (возбуждение проявляется сокращением);
• секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

Возбудимая клетка в состоянии покоя

Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

Электрические и физиологические проявления возбуждения

Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

Устройство клеточной мембраны возбудимой клетки

В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

Ионные насосы и трансмембранные ионные градиенты

Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
• концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
• концентрация K+ внутри клетки выше, чем снаружи.

Ионные каналы

Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

Неселективные каналы
• пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
• всегда находятся в открытом состоянии.

Селективные каналы обладают следующими свойствами:
• пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
• могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
• хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
• потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

Механизм формирования потенциала покоя

Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

где R – универсальная газовая постоянная,
Т – температура (по Кельвину),
F – число Фарадея,
[К+] нар – концентрация ионов К+ снаружи клетки,
[К+] вн – концентрация ионов К+ внутри клетки.

ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

• поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

• прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

Механизм развития потенциала действия

В потенциале действия выделяют несколько фаз (рис. 4):

• фаза деполяризации;
• фаза быстрой реполяризации;
• фаза медленной реполяризации (отрицательный следовый потен­циал);
• фаза гиперполяризации (положительный следовый потенциал).

Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

Изменение возбудимости клетки при развитии возбуждения

Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

• Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

• Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

• Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

• Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

Потенциалом действия (ПД) называют быстрое колебание мем­бранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной прони­цаемости мембраны. Амплитуда ПД мало зависит от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения. Воз­никнув в месте раздражения, ПД распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды.

В естественных условиях ПД генерируются в нервных волокнах при раздражении рецепторов или возбуждении нервных клеток. Распростра­нение ПД по нервным волокнам обеспечивает передачу информации в нервной системе. Достигнув нервных окончаний, ПД вызывают секрецию химических веществ (медиаторов), обеспечивающих передачу сигнала на мышечные или нервные клетки. В мышечных клетках ПД инициируют цепь процессов, вызывающих сократительный акт. Ионы, проникающие в цитоплазму во время генерации ПД, оказывают регулирующее влияние на метаболизм клетки и, в частности, на процессы синтеза белков, состав­ляющих ионные каналы и ионные насосы.


Рис. 3. Потенциал действия скелетного мышечного волокна, зарегистрированный с помощью внутриклеточного микроэлектрода: а – фаза деполяризации, б – фаза реполяризации, в – фаза следовой деполяризации (отрицательный следовой потенциал). Момент нанесения раздражения показан стрелкой.

Установлено, что во время восходящей фазы (фазы деполяризации) происходит не просто исчезновение потенциала покоя (как это первоначально предполагали), а возникает разность потенциалов обратного знака: внутреннее содержимое клетки становится заряженным положительно по отношению к наружной среде, иными словами, происходит реверсия мембранного потенциала. Во время нисходящей фазы (фазы реполяризации) мембранный потенциал возвращается к своему исходному значению. Если рассмотреть пример записи ПД в скелетном мышечном волокне лягушки (см. рис. 3), то видно, что в момент достижения пика мембранный потенциал составляет +30 – +40 мВ. Длительность пика ПД у различных нервных и мышечных волокон варьирует от 0,5 до 3 мс, причем фаза реполяризации продолжительнее фазы деполяризации.

Изменения мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов – следовую деполяризацию и следовую гиперполяризацию.

Ионный механизм возникновения ПД. Как отмечалось, в состоянии покоя проницаемость мембраны для калия превышает ее проницаемость для натрия. Вследствие этого поток К + из цитоплазмы во внешний раствор превышает противоположно направленный поток Na + . Поэтому наружная сторона мембраны в покое имеет положительный потенциал по отношению к внутренней.

При действии на клетку раздражителя проницаемость мембраны для Na + резко повышается и становится примерно в 20 раз больше проницаемости для K + . Поэтому поток Na + из внешнего раствора в цитоплазму начинает превышать направленный наружу калиевый ток. Это приводит к изменению знака (реверсии) мембранного потенциала: внутренняя сторона мембраны в месте возбуждения становится заряженной положительно по отношению к ее наружной поверхности. Указанное изменение мембранного потенциала соответствует восходящей фазе ПД (фазе деполяризации).

Повышение проницаемости мембраны для Na + продолжается лишь очень короткое время. Вслед за этим проницаемость мембраны для Na + вновь понижается, а для K + возрастает. Процесс, ведущий к понижению ранее увеличенной натриевой проницаемости мембраны, назван натриевой инактивацией. В результате инактивации поток Na + внутрь цитоплазмы резко ослабляется. Увеличение же калиевой проницаемости вызывает усиление потока K + из цитоплазмы во внешний раствор. В итоге этих двух процессов и происходит реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к наружной стороне мембраны. Этому изменению потенциала соответствует нисходящая фаза ПД (фаза реполяризации). Опыты на гигантских нервных волокнах кальмара позволили получить подтверждение правильности натриевой теории возникновения ПД.

ПД возникает при деполяризации поверхностной мембраны. Небольшие величины деполяризации приводят к открыванию части натриевых каналов и незначительному проникновению ионов Na внутрь клетки. Эти реакции являются подпороговыми и вызывают лишь местные изменения на мембране (локальный ответ). При увеличении силы раздражения, когда достигнут порог возбудимости, изменения мембранного потенциала достигают критического уровня деполяризации (КУД). Например, величина потенциала покоя равна -70 мВ, КУД = -50 мВ. Чтобы вызвать возбуждение, надо деполяризовать мембрану до -50 мВ, т.е. на -20 мВ снизить ее исходный потенциал покоя. Только при достижении КУД наблюдается резкое изменение мембранного потенциала, которое регистрируется в виде ПД. Таким образом, основное условие возникновения потенциала действия – это снижение мембранного потенциала до критического уровня депо­ляризации.

В основе рассмотренных изменений ионной проницаемости мембра­ны при генерации ПД лежат процессы открывания и закрывания специали­зированных ионных каналов в мембране, обладающих двумя важнейшими свойствами:

■ избирательностью (селективностью) по отношению к определен­ным ионам;

■ электровозбудимостью, т.е. способностью открываться и закры­ваться в ответ на изменения мембранного потенциала.

Так же как ионные насосы, ионные каналы образованы макромолекулами белков, пронизывающими липидный бислой мембраны.

Активный и пассивный ионный транспорт. В процессе восста­новления после ПД работа калий-натриевого насоса обеспечивает «откач­ку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, благодаря чему нарушенное при возбуждении неравенство концентраций Na + и K + по обе стороны мембраны восстанавливается. На работу этого механизма тратится около 70 % необходимой клетке энергии.

Таким образом, в живой клетке существует две системы движения ионов через мембрану.

Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии (пассивный ионный транспорт) . Он ответствен за возникновение потенциала покоя и ПД и ведет в конечном итоге к вы­равниванию концентрации ионов по обе стороны клеточной мембраны.

Второй осуществляется против концентрационного градиента. Он состоит в «выкачивании» ионов натрия из цитоплазмы и «нагнетании» ио­нов калия внутрь клетки. Этот тип ионного транспорта возможен лишь при условии затраты энергии обмена веществ. Его называют активным ион­ным транспортом. Он ответствен за поддержание постоянства разности концентраций ионов между цитоплазмой и омывающей клетку жидкостью. Активный транспорт - результат работы натриевого насоса, благодаря ко­торому восстанавливается исходная разность ионных концентраций, на­рушающаяся при каждой вспышке возбуждения.

Проведение возбуждения

Нервный импульс (потенциал действия) обладает способностью рас­пространяться вдоль по нервным и мышечным волокнам.

В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5 – 6 раз превышает пороговую величину деполяризации. Это обеспечивает высокую скорость и надежность проведения.

Между зоной возбуждения (имеющей на поверхности волокна отрицательный заряд и на внутренней стороне мембраны – положительный) и соседним невозбужденным участком мембраны нервного волокна (с обратным соотношением зарядов) возникают электрические токи – так называемые местные токи. В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемости и появление потенциала действия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т.д. Таким образом, с помощью местных токов происходит распространение возбуждения на соседние участки нервного волокна, т.е. проведение нервного импульса. По мере проведения амплитуда потенциала действия не уменьшается, т.е. возбуждение не затухает даже при большой длине нерва.

В процессе эволюции с переходом от безмякотных нервных волокон к мякотным (покрытым миелиновой оболочкой) произошло существенное повышение скорости проведения нервного импульса. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает последовательно каждый соседний участок нерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить только в оголенных участках мембраны -перехватах Ранвье, лишенных этой оболочки. При проведении нервного импульса потенциал действия перескакивает от одного перехвата к другому и может охватывать даже несколько перехватов. Такое проведение поучило название сальтоторного (лат. сальто – прыжок). При этом повышается не только скорость, но и экономичность проведения. Возбуждение захватывает не всю поверхность мембраны волокна, а лишь небольшую ее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.

Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприоцептивные афферентные нервные волокна - до 100 м/с. В тонких симпатических нерв ных волокнах (особенно в немиелинизированных волокнах) скорость проведения мала - порядка 0,5 - 15 м/с.

Во время развития потенциала действия мембрана полностью теряет возбудимость. Это состояние называют полной невозбудимостью, или абсолютной рефрактерностью. За ним следует относительная рефрактерность, когда потенциал действия может возникать лишь при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.

Законы проведения возбуждения в нервах:

1. Проведение импульсов возможно лишь при условии анатомической и физиологической целостности волокна.

2. Двустороннее проведение: при раздражении нервного волокна возбуждение распространяется по нему и в центробежном, и в центростремительном направлениях.

3. Изолированное проведение: в периферическом нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна.

13. Дайте определение гомеостаза.


14. Назовите основные пути регуляции различных функций у высокоорганизо­ванных животных и человека.

15. Кем и когда было открыто «животное электричество»?

16. Какие ткани относятся к возбудимым? Почему они так называются?

17. Назовите основные функциональные характеристики возбудимых тканей.

18. Что называют порогом возбудимости?

19. От каких факторов зависит величина порога?

20. Что такое лабильность? Кем было выдвинуто понятие лабильности, какие свойства возбудимых тканей оно характеризует?

21. Что называют мембранным потенциалом (потенциалом покоя)?

22. Чем обусловлено наличие электрических потенциалов в живых клетках?

23. В каких случаях говорят о деполяризации (или гиперполяризации) клеточ­ной мембраны?

24. Какую роль в формировании потенциала покоя играет калий-натриевый на­сос мембраны?

25. Что называют потенциалом действия? Какова его роль в нервной системе?

26. Что лежит в основе возникновения потенциала действия?

27. Охарактеризуйте фазы потенциала действия.

28. Что называют реверсией мембранного потенциала?

29. Опишите ионный механизм возникновения потенциала действия.

30. Что понимают под натриевой инактивацией?

31. Что такое критический уровень деполяризации?

32. Какими свойствами обладают ионные каналы клеточной мембраны?

33. Охарактеризуйте два типа ионного транспорта в клетке:

■ пассивный;

■ активный.


Модуль 1 ОБЩАЯ ФИЗИОЛОГИЯ ЦНС