Меню Рубрики

Nh4 метод валентных связей. Ковалентная связь

В основе метода валентных связей (ВС) лежат сле­ду­ю­щие по­ло­жения:

Электронное строение химических соединений рас­смат­ри­ва­ет­ся как совокупность отдельных двухцент­ро­вых двух­элек­т­рон­ных химических связей, лока­ли­зо­ванных между со­­сед­ни­ми ато­­мами;

Каждая индивидуальная химическая связь между двумя соседними атомами образуется в результате обобществления электронной па­ры с противополож­но направленными спинами. Такая общая элек­т­ронная пара может обра­зо­вы­ваться как в результате взаимо­дейс­т­вия двух атомов, каждый из которых ха­рак­теризуется наличием не­спаренного элек­т­рона на перекрывающихся ва­лент­ных орби­та­лях, (обменный ме­ха­­низм), так и за счет пары электронов од­но­го атома – донора - и сво­бодной орбитали другого атома – акцептора (до­нор­но-акцеп­тор­ный механизм);

В зависимости от симметрии распределения электронной плот­нос­ти общей электронной пары по отношению к линии химической свя­зи между взаи­мо­дейст­вующими атомами различают s , p и d связи. Поскольку между двумя ато­мами возможно образование не более од­ной s, двух p и од­ной d связи, то хи­мические связи могут быть: одно- (s), двух- (s+p), трех- (s+2p) и четы­рех­кратными (s+2p+d);

Так как энергия (Е) индивидуальной двухцентровой двухэлект­рон­ной хими­чес­­­кой свя­зи тем больше, чем больше перекрывание меж­ду атом­ны­ми ор­би­талями взаимодействующих атомов, то связь об­ра­зуется в направлении мак­си­мального перекрывания и характери­зу­ется направленностью в прост­ран­ст­ве. В связи с разли­чи­ем в эф­фек­тивности перекрывания атомных ор­би­­та­лей: Е(s) > E(p) > E(d);

Количественная мера способности атома химического элемента к обра­зо­ва­нию химических связей – валентность - оп­ре­деляется чис­лом двухэлект­рон­ных двухцентровых химических свя­зей, об­ра­зу­емых атомом химического эле­мента со своими партнерами в хи­ми­ческом соединении. Учитывая об­мен­ный и донорно-акцептор­ный механизмы образования химических связей, валентность ато­ма в химическом соединении приравнивается числу его ис­пользо­ван­ных в связывании ва­лентных орби­та­лей независимо от их за­се­лен­ности элек­т­ронами. Максимально возможная валентность ато­ма хими­чес­ко­го элемента не может превышать число его ва­лен­т­ных орбиталей, что опре­де­ляет насыщаемость ковалентных хи­ми­чес­ких связей.

Пример 1. Описать электронное строение и обосновать немо­но­тон­ный ха­рак­тер измене­ния энергии связи (кДж/моль) в молекулах галогенов: F 2 (159) < Cl 2 (243) > Br 2 (199) > I 2 (151) > At 2 (117).

Решение. Взаимодействие двух атомов F 2s 2 2p 5 , каждый из ко­то­рых ха­рак­те­ризуется на­личием одного неспаренного электрона на валентных 2р орби­та­­лях, определяет образование по обменному ме­ха­низму одинарной хими­чес­кой связи s типа в молекуле F 2:


Для атомов Cl, Br, I и At валентными орбиталями являются не толь­ко ns 2 np 5 , но и свободные nd орбитали. Это определяет наличие в мо­ле­ку­лах этих гало­ге­нов, наряду с химической связью s типа на ос­но­ве обменного механизма, до­пол­нительной связи p типа по донорно-ак­цеп­торному механизму за счет непо­де­ленной электронной пары од­но­го атома и свободной 3d орбитали другого:


Наличие дополнительного p связывания определяет закономерное уве­­личение крат­ности[†] и энергии связи при переходе от молекулы F 2 к Cl 2 . Дальнейшее уменьшение энергии связи в ряду Cl 2 ®Br 2 ®I 2 ®At 2 свя­зано с уменьшением эффективности перекрывания валент­ных ор­би­талей взаимодействующих ато­мов галогенов в результате увели­че­ния размера валентных орбиталей.

Пример 2. Описать электронное строение и определить валентность фосфора в его соединениях со фтором: PF 3 , PF 5 и - . Какие из приведенных соеди­не­ний может образовывать азот?

Решение. Основное состояние P 3s 2 3p 3 3d 0 характеризуется нали­чи­ем элект­рон­ной пары, трех неспаренных электронов и пяти свобод­ных валентных орби­та­лей. Взаимодействие трех атомов фтора, каж­дый из которых имеет один не­с­па­ренный электрон F 2s 2 2p 5 , с тремя не­спаренными электронами атома фосфора в основном состоянии оп­ре­деляет образование по обмен­но­му механизму трех s связей в сое­ди­нении PF 3:

В возбужденном состоянии атом фосфора Р* 3s 1 3p 3 3d 1 характери­зу­ется на­ли­чием пяти неспаренных электронов на валентных орбита­лях и, как следствие этого, может участвовать в образовании пяти s связей по обменному меха­низ­му при взаимодействии с пятью ато­ма­ми фтора в соединении PF 5:


Следует отметить, что относительно небольшой энергетический зазор между ва­лентными 3s, 3p и 3d орбиталями приводит к небольшим энер­гетическим за­тратам на возбуждение атома, которые с избытком окупаются при образовании дополнительных химических связей.

Образование иона - происходит в результате донорно-акцеп­тор­ного вза­и­модействия иона F - 2s 2 2p 6 , предоставляющего электрон­ную пару, и PF 5 , харак­те­ризующегося наличием свободной d орбита­ли у атома фосфора:


В соответствии с числом двухэлектронных химических связей, об­ра­зуемых атомом фосфора с партнерами, валентность фосфора в сое­ди­не­ниях PF 3 , PF 5 и - соответственно составляет 3, 5 и 6.

В отличие от атома фосфора, валентные возможности эле­мен­та вто­рого пе­ри­ода азота N 2s 2 2p 3 ограничены возможностью обра­зо­ва­ния не более четырех хи­мических связей с участием четырех валент­ных орбиталей – трех по об­мен­но­му ме­ха­низ­му за счет трех неспа­рен­ных электронов на 2р валентных орби­та­лях и одной по донорно-акцепторному механизму за счет электронной пары на 2s орбиталях. Это определяет существование для азота только соединения NF 3 .

При взаимодействии атомов разных химических элементов обоб­щен­ная электронная пара смещена к более электроотрицательному ато­му, что приводит к появ­ле­нию на атомах равных по величине (q) избыточного отрицательно­го и по­ложительного заряда. Количест­вен­ной характеристикой поляр­нос­ти такой хи­ми­ческой связи является ве­­личина дипольного момен­та (m) – произведения абсолютного зна­че­ния избыточного заряда q на расстояние l между центрами положи­тель­ного и отрицательного за­рядов в диполе (длину диполя): m = q×l[‡][КБ1] .

Пример 3. Определить эффективные заряды на атомах фтора и во­до­рода в мо­лекуле HF, если величина дипольного момента и длины связи H-F сос­тав­ля­ют 1.91 D и 92 пм.

Решение. Эффективный заряд атомов водорода и фтора, обра­зую­щих кова­лент­ную полярную связь, можно рассчитать как долю от за­ря­да электрона, поль­зуясь соотношением:

q = m эксп /m ион,

где q – величина эффективного заряда атомов Н и F; m ион – значение диполь­но­го момента молекулы, рассчитанное при допущении, что HF состоит из ионов H + и F - с зарядами равными заряду электрона e = 1.602×10 -19 Кл; m эксп – экспери­мен­таль­ное значение дипольного мо­мен­та молеку­лы HF.

q = e×l/m эксп = (1.91×3.34×10 -30)/ 1.602×10 -19 ×9.2×10 -11 = 0.43.

Таким образом, эффективные заряды в молекуле: H +0.43 F -0.43 , что ука­зы­вает на ионно-ковалентный характер химической связи – 43% ион­нос­ти и 57% кова­лент­ности.

Поскольку дипольный мо­мент химической связи является вели­чи­ной век­тор­ной, направлен­ной от положительного к отрицательному концу диполя, то ди­поль­­ный мо­мент химического соединения опре­де­ляется век­торной сум­мой ди­поль­ных моментов отдельных хими­чес­ких свя­зей и зависит не только поляр­нос­ти каждой связи, но и от пространст­вен­ного распо­ло­жения связей в сое­ди­не­нии. Так, несмотря на полярность индивидуальных связей А d + -В d - , при сим­­мет­ричном геометрическом строении молекул AB n:

векторная сумма дипольных моментов связей равна 0, что приводит к непо­ляр­ности соединений.

На величину дипольного момента и полярность многоатом­ных мо­ле­­кул ока­зы­вает влияние также наличие неподеленных электронных пар в электронной структуре молекулы.

Пример 4. Обосновать различие в дипольных моментах и поляр­нос­ти изо­струк­тур­ных тригонально-пирамидальных молекул: NH 3 (1.5 D) и NF 3 (0.2 D).

Решение. В молекулах NH 3 и NF 3 атом азота участвует в образо­ва­нии трех s свя­зей с партнерами и характеризуются наличием неподе­ленной пары элект­ро­нов. С учетом различия в электротрицательности атомов азота по сравнению с водородом c(N) > c(H) и фтором c(N) < c(F), дипольные моменты связей N-H на­правлены в сторону азота, а дипольные моменты связей N-F – в сторону фтора:

Поскольку направление векторной суммы дипольных моментов свя­зей N-H для NH 3 совпадает с направлением неподеленной элект­рон­­ной пары, локали­зо­ван­ной на ато­ме азота, то происходит усиле­ние ди­польного момента и поляр­нос­­ти аммиака. В молекуле же NF 3 на­п­рав­ление век­торной суммы ди­поль­ных моментов связей N-F пря­мо про­ти­во­по­лож­но направлению электронной пары, что и опреде­ля­ет умень­шение дипольного момента и полярности NF 3 .

Для обоснования энергетической эквивалентности и симмет­рич­ной прост­ран­ственной ориентации двухцентровых двухэлектрон­ных химических связей, об­разуемых в результате перекрывания раз­ных (s, p, d) валентных орбиталей центрального атома с орбиталями лиган­дов, используется концепция гибри­ди­за­ции валентных атомных ор­би­­талей , основанной на следующих положениях:

В образовании химических связей s типа центрального атома с ли­ган­дами мо­гут принимать участие не исходные атомные орбитали (s, p, d), раз­ли­ча­ю­щи­еся по энергии и форме, а эквивалентные гиб­рид­ные орбитали, форма ко­то­рых обеспечивает наиболее эффек­тив­ное перекрывание с орбиталями ли­ган­дов;

Поскольку на гибридизацию атомных орбиталей центрального ато­ма необ­хо­ди­мы затраты энергии, которые компенсируются за счет образования более прочных химических связей, то эффективность гибридизации уменьшается с ростом энергетического зазора между исходными атомными орбиталями и увеличения их размера. В ре­зультате этого, как по периоду (увеличение энер­гетического зазора между ns, np и nd валент­ны­ми орбиталями), так и по группе (уве­ли­чение размера валентных орбиталей) эффективность гибриди­за­ции орбиталей атомов химических элементов уменьшается;

Число гибридных орбиталей определяется числом исходных атом­ных орби­та­лей, участвовавших в гибридизации: s + p = 2sp, s + 2p = 3sp 2 , s + 3p = 4sp 3 , s + 2p + d = 4sp 2 d, s + 3p + d = 5sp 3 d, s + 3p + 2d = 6sp 3 d 2 ;

Для соединений непереходных элементов тип гибридизации атом­ных орби­та­лей центрального атома, простран­ст­вен­ное располо­же­ние гибридных ор­би­талей и, следо­ва­тель­но, стереохимическое стро­е­ние соединений в основ­ном опре­де­­ля­ет­ся минимальной энер­ги­ей отталкивания электронных пар, обес­­­­пе­чи­вающих образование s связей центрального атома с ли­ган­дами, а также непо­де­лен­ных валентных пар центрального атома (модель локали­зо­ван­ных элект­ронных пар). Поскольку электронная пара хими­чес­кой s связи за­ни­мает меньший объем, чем неподеленная электрон­ная пара (n), то от­тал­ки­вание между электронными парами увели­чи­вается в ряду: s-s < s-n < n-n.

Пример 5. Описать электронное строение, определить геометри­чес­­кую фор­му и кратность связи в следующих соединениях: а) H 2 O, б) CO 2 , в) SO 2 , г) NO 3 - ; д) BrF 4 - , е) PCl 5 , ж) SF 6 .

Решение. С учетом концепции гибридизации при анализе элек­т­рон­ного стро­ения, геометрической формы и кратности связи в со­е­динениях не­пе­ре­ход­­­ных элементов рекомендуется придержи­вать­ся такой последова­тель­нос­ти:

1. Написать электронные формулы центрального атома и лиган­дов в основ­ном состоянии и на основании электронного строения ли­гандов опреде­лить число s и p связей в соеди­не­нии:

а) H 2 O - O 2s 2 2p 4 , 2H 1s 1 с 2 неспа­рен­ными электронами обра­зу­ют 2s свя­зи с атомом О по обмен­но­му механизму;

б) СО 2 - С 2s 2 2p 2 , 2О 2s 2 2p 4 с 4 неспарен­ными электрона­ми об­ра­зу­ют 2s и 2p связи с атомом С по обменному ме­ханиз­му;

в) SО 2 - S 3s 2 3p 4 3d 0 , 2О 2s 2 2p 4 с 4 неспарен­ны­ми элект­ро­на­ми об­разуют 2s и 2p свя­зи с атомом S по об­мен­ному ме­ха­низ­му;

г) NO 3 - - N 2s 2 2p 3 , 2О 2s 2 2p 4 и О - 2s 2 2p 5 характери­зу­ются 5 не­спа­ренными электронами и, следовательно, должны образовы­вать 5 двухэлектронных свя­зей с центральным атомом азо­та. Од­на­ко, как и для атомов других хи­ми­ческих элементов 2 пе­ри­ода мак­си­мальное число двухэлектронных свя­зей (макси­мальная ва­лент­ность) для азота не может превышать 4. Это оп­­ре­деляет не­об­­ходимость уменьшения числа неспаренных элект­ро­нов на ли­ган­дах в результате перераспределения числа элект­ронов меж­ду лиган­да­ми и атомом азота: NO 3 - - N + 2s 2 2p 2 , О 2s 2 2p 4 и 2О - 2s 2 2p 5 – такая сис­те­ма характеризуется 4 неспаренными электронами на лигандах, которые мо­гут участ­во­вать в образовании 3s и 1p свя­зи с катионом N + по обмен­но­му ме­ханиз­му;

д) BrF 4 - - Br 4s 2 4p 5 4d 0 , 3F 2s 2 2p 5 с 3 неспаренными элек­т­ро­нами и F - 2s 2 2p 6 образуют 4s связи с атомом Br: 3 по об­мен­ному и 1 по донорно-акцеп­тор­но­му механизму;

е) PCl 5 - P 3s 2 3p 3 3d 0 , 5Cl 3s 2 3p 5 c 5 неспаренными элек­т­ро­нами об­разуют 5s связей с атомом Р по обменному меха­низ­му;

ж) SF 6 – S 3s 2 3p 4 3d 0 , 6F 2s 2 5p 5 c 6 неспаренными элек­т­ро­на­ми об­разуют 6s связей с атомом S по обменному меха­низ­му.

2. Для образования требуемого числа s и p свя­­зей по обменному механизму при необходимости перевести центральный атом в воз­­бужденное сос­то­я­ние и уравнять число неспаренных элект­ро­нов центрального атома и ли­ган­дов:

а) H 2 O - центральный атом О 2s 2 2p 4 и лиганды 2Н 1s 1 содержат одина­ко­вое число неспаренных электронов;

б) СО 2 – 4 неспаренных электрона лигандов 2О 2s 2 2p 4 опреде­ля­ют необ­хо­димость возбуждения атома углерода С* 2s 1 2p 3 ;

в) SО 2 - 4 неспаренных электрона лигандов 2О 2s 2 2p 4 опреде­ля­ют необхо­ди­мость возбуждения атома серы S* 3s 2 3p 3 3d 1 ;

г) NO 3 - - 4 неспаренных электрона лигандов О 2s 2 2p 4 и 2О - 2s 2 2p 5 опреде­ля­ют необходимость возбуждения катиона N +* 2s 1 2p 3 ;

д) BrF 4 - - 3 неспаренных электрона лигандов 3F 2s 2 2p 5 опреде­ля­ют необ­хо­димость возбуждения атома Br * 4s 2 4p 4 4d 1 ;

е) PCl 5 – 5 неспаренных электрона лигандов 5Cl 3s 2 3p 5 опреде­ля­ют необ­хо­димость возбуждения атома P * 3s 1 3p 3 3d 1 ;

ж) SF 6 – 6 неспаренных электрона лигандов 6F 2s 2 2p 5 опреде­ля­ют необ­хо­ди­мость возбуждения атома S * 3s 1 3p 3 3d 2 .

3. На основании суммы числа s связей центрального атома с ли­ган­­да­ми и чис­ла неподеленных электронных пар на валентных ор­­биталях цент­раль­ного атома определить число гибридных ор­биталей, а на основании при­ро­ды орбиталей центрального ато­ма, участвующих в образовании s свя­зей и содержащих неподе­лен­ные пары - тип гибридизации:

а) H 2 O – О образует 2s связи с ато­ма­ми Н и со­держит 2 неподе­лен­ные пары – всего 4 гибрид­ные орбитали, об­разующиеся из s и трех p орби­та­лей, sp 3 гиб­ридизация;

б) СО 2 – С* в возбужденном состоянии об­разует 2s связи с ато­ма­­ми О и не содержит неподе­лен­ных пар – все­го 2 гибридные, об­­разующиеся из s и одной p орби­та­лей, sp гибридизация;

в) SО 2 – S* в возбужденном состоянии об­ра­зует 2s связи с ато­ма­ми O и со­держит одну неподе­лен­­ную элект­рон­ную пару – все­го 3 гибридных ор­би­тали, обра­зу­ющиеся из s и двух p орбита­лей, sp 2 гиб­ридизация;

г) NO 3 - - катион N + в возбужденном состоянии об­ра­зует 3s связи с одним ато­мом и двумя ионами кислорода, не­по­деленных элек­т­ронных пар нет – все­го 3 гибридные орбитали, обра­зу­ющиеся из s и двух p орбиталей, sp 2 гиб­ри­дизация;

д) BrF 4 - - Br* в возбужденном состоянии об­ра­зует 3s свя­­зи с ато­­­ма­ми F по обменному механизму и 1s свя­зь с ио­ном F - по до­нор­но-акцепторному механизму, содержит 2 не­по­деленные элек­т­рон­ные пары – всего 6 гиб­рид­ных орбиталей, образую­щих­ся из s, трех p и двух d орбиталей, sp 3 d 2 гиб­­ри­дизация;

е) PCl 5 – Р* в возбужденном состоянии об­ра­зует 5s свя­­зей с ато­ма­ми Cl и не содержит неподеленных электрон­ных пар – все­го 5 гибридных орби­та­лей, образующихся из s, трех p и одной d ор­би­талей, sp 3 d гиб­ри­диза­ция;

ж) SF 6 – S* в возбужденном состоянии об­ра­зует 6s свя­­зей с ато­ма­ми F и не содержит неподеленных электрон­ных пар - всего 6 гибридных орби­та­лей, образующихся из s, трех p и двух d орби­та­лей, sp 3 d 2 гиб­ри­диза­ция;

4. С учетом энергетической эквивалентности и пространственной ориен­та­ции гибридных орбита­лей привести электронно-графи­чес­кие и структур­но-графические формулы соединений; с уче­том числа s и p связей цент­раль­ного атома с ли­ган­дами и дело­ка­лизации p связей, определить крат­ность связей (К):



К = 2 К = 1 1 / 3




Пример 6. Почему в ряду водородных соединений р-элементов VI группы H 2 Э валентные углы ÐНЭН уменьшаются: H 2 O (104.5 0) > H 2 S (92.2 0) > H 2 Se (91.0 0) > H 2 Te (90 0)?

Решение. Электронное строение молекул H 2 Э характеризуется на­ли­чием двух s связей Э-Н и двух неподеленных электронных пар, ло­ка­­лизованных на ато­мах р-элементов VI группы. Величина валент­но­го угла ÐНЭН определяется с од­ной стороны природой и пространст­вен­ной ори­ен­­тацией орбита­лей цент­раль­ного атома, принимающих учас­тие в о­б­ра­зо­вании s связей Э-Н, а с другой – эф­фек­том межэлек­т­ронного от­тал­кивания между неподеленными и s связыва­ю­щи­ми элек­т­ронными парами.

Наличие 2 s связей и 2 неподеленных электронных пар определяет возмож­ность участия в образовании s связей либо sp 3 гибридизован­ных валентных ор­би­талей центрального атома, характе­ри­зующихся тет­раэдрической пространст­вен­ной ориентацией с углом ÐНЭН = 109 0 , либо исходных атомных р орби­та­лей, расположенных под углом 90 0 . Поскольку с увеличением главного кван­то­во­го числа валентных орбиталей центрального атома размер орбиталей уве­ли­чи­вается, то эф­фективность их гибридизации уменьшается, что и приводит к умень­шение валентного угла ÐНЭН от близкого к тетраэдрическому 104.5 0 для H 2 O до 90 0 для H 2 Te. Несколько меньшее значение ва­лент­ного угла ÐНОН = 104.5 0 по сравнению с тетраэдрическим 109 0 обус­ловлено эффектом межэлект­рон­ного отталкивания двух неподе­лен­ных электронных пар на s связывающие элек­т­ронные пары.

Описание электронного строения комплексных соединений пере­ход­ных ме­тал­лов методом ВС характеризуется следующими особен­нос­тями:

Образование химических связей между центральным ионом ме­тал­ла комп­лек­сообразователем и лигандами происходит в результате до­нор­но-акцеп­тор­ного взаимодействия свободных гибридных ор­би­­талей иона металла (ак­цеп­тора) и заполненных парой элект­ро­нов орбиталей ли­гандов (доноров);

Тип гибридизации валентных орбиталей центрального иона метал­ла опреде­ля­ется числом s связей иона металла с лигандами (коор­ди­национным чис­лом) без уче­та неподеленных электронных пар на валентных орбиталях ме­тал­­ла;

В зависимости от характера валентных орбиталей иона металла, участ­вую­щих в гибридизации и образовании s связей с ли­гандами возможно образо­ва­ние двух типов комплексов – внеш­не­орбиталь­ных (высокоспиновых), ха­рак­теризующихся неизменным по срав­не­нию со свободным ионом металла рас­пределением электронов по d-орбиталям, и внутриорбитальных (низко­спи­новых) с изме­нен­ным распределением электронов по d-орбиталям в ре­зуль­тате участия части d-орбиталей в образовании донорно-акцепторной свя­­зи с лигандами.

Пример 7. Описать электронное строение, определить геометри­чес­кую форму и магнитные свойства следующих комплексных соедине­ний переходных ме­тал­лов: а) 2- и 2- , б) 3+ и 3+ .

Решение. При анализе элек­т­рон­ного строения, геометрической фор­мы и маг­нит­ных свойств комплексных соединений переходных ме­тал­лов придержи­вать­ся такой последова­тель­ности:

1. Определить заряд центрального иона металла и записать его элект­рон­но-гра­фи­ческую формулу:


2. Определить число s связей иона металла с лигандами и возможные типы гибридизации валентных орбиталей иона металла:

а) 2- и 2- - 4s связи, sp 3 и dsp 2 гибридиза­ция;

б) 3+ и 3+ - 6s связей, sp 3 d 2 и d 2 sp 2 гибридиза­ция.

3. На основании анализа природы иона металла и лигандов опреде­лить харак­тер комплекса – внешнеорбитальный (высокоспиновый) или внутриор­би­таль­ный (низкоспиновый) и реализуемый тип гиб­ри­дизации орбиталей иона металла:

А) 2- - Cl - является лигандом слабого поля и с 3d ионом Ni 2+ образует вы­сокоспиновый – внешне­ор­би­тальный комплекс с не­из­мен­ным по срав­не­нию со свободным ио­ном распре­де­лением элект­ро­нов по 3d орбиталям, что со­ответствует sp 3 гибри­ди­за­ции ор­би­та­лей Ni 2+ :

2- - CN - является лигандом сильного поля и с 3d ионом Ni 2+ образует низкоспиновый – внутри­ор­би­тальный комплекс, ха­рак­теризующийся в ре­зультате спаривания электронов на 3d орби­та­лях, наличием одной свободной 3d орбитали, что определяет dsp 2 тип гибридизации орбиталей Ni 2+ :

Б) 3+ - H 2 O является лигандом слабого поля и с 3d ионом Co 3+ об­ра­зу­ет высокоспиновый – внешнеорбитальный комплекс с не­изменным по срав­нению со свободным ио­ном распре­де­лением элект­ро­нов по 3d орби­та­лям, что соответствует sp 3 d 2 гибри­ди­за­ции ор­би­та­лей Co 3+ :

3+ - 5d ион Ir 3+ , независимо от силы поля лигандов, обра­зует низ­ко­спи­новые – внутриорбитальные комплексы, характери­зу­ю­­щиеся, в резуль­та­те спаривания электронов на 5d орби­та­лях, на­ли­чием двух свободных 5d ор­би­талей, что определяет d 2 sp 3 гибри­дизацию орбиталей Ir 3+ :


4. Показать образование донорно-акцепторных связей лигандов с ги­б­ри­дизо­ван­ными орбиталями иона металла, геометрическую фор­му комплекса и ука­зать его магнитные свойства:


парамагнитный,

диамагнитный;


парамагнитный;

Метод ВС основан на следующих основных положениях:

а) химическая связь между двумя атомами возникает как результат перекрывания АО с образованием электронных пар (обобщенных двух электронов);

б) атомы, образующие химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами (энергия притяжения атомов) вносит свой вклад в энергию химической связи. Дополнительный вклад в энергию связи дают кулоновские силы взаимодействия частиц;

в) в образовании химической связи участвуют электроны с антипараллельными спинами;

г) характеристики химической связи (энергия, длина, полярность и др.) определяется типом перекрывания АО.

Электронная структура молекулы значительно отличается от электронной структуры образующих ее атомов. Например, электронные орбитали в молекуле водорода не имеют сферической симметрии в отличие от АО атома водорода, так как электронная пара принадлежит двухцентровой молекулярной системе. В то же время эта связывающая электронная пара находится на более низком энергетическом уровне, чем неспаренные электроны атомов водорода.

В результате образования молекул из атомов изменения претерпевает лишь электронная структура внешних и предвнешних оболочек атомов. Поэтому в образовавшейся молекуле атомы с исходной электронной структурой не существуют. У атомов в молекуле сохраняются лишь электронные конфигурации внутренних электронных оболочек, не перекрывающихся при образовании связей.

Способность атома присоединять или замещать определенное число других атомов с образованием химических связей называется валентностью. Согласно методу ВС, каждый атом отдает на образование общей электронной пары (ковалентной связи) по одному неспаренному электрону. Количественной мерой валентности в обменном механизме метода ВС является число неспаренных электронов у атома в основном или возбужденном состоянии. К ним относятся неспаренные электроны внешних оболочек атомов s- и р -элементов, внешних и предвнешних оболочек d- элементов.

При образовании химической связи атом может переходить в возбужденное состояние в результате разъединения пары или пар электронов и переходе одного (или нескольких электронов, равных числу разъединенных пар) на свободную орбиталь той же оболочки. Например, электронная конфигурация кальция в основном состоянии записывается как 4s 2 . В соответствии с обменным механизмом метода ВС валентность его равна нулю, т.е. для Са (…4s 2) валентностьВ=0. У атома кальция в четвертой оболочке (п=4) имеются вакантные р- орбитали. При возбуждении атома происходит распаривание электронов и один из 4s- электронов переходит на свободную 4s- орбиталь. Валентность кальция в возбужденном состоянии равна двум, т.е. при распаривании валентность увеличивается на две единицы.

4s 4p 4s 4p
Ca Ca* B*=2

В отличие от кислорода и фтора, электронные пары которых не могут разъединяться, т.к. на втором уровне нет других вакантных орбиталей, электронные пары серы и хлора могут распариваться, т.к. на третьем уровне есть вакантные 3d-орбитали. Соответственно сера, кроме валентности основного состояния I и II,

3s 3p 3d

имеет еще валентности IV и VI в возбужденных состояниях:

3s 3p 3d

Пространственная структура молекул .

Как было показано ранее, ковалентная химическая связь характеризуется направленностью, что обусловлено определенными ориентациями АО в пространстве.

Связь, образованная перекрыванием АО по линии, соединяющей ядра соединяющихся атомов, называется σ-связью . Примерами образования σ-связей являются перекрывания s-орбиталей, s- и p-орбиталей, р-орбиталей, d-орбиталей, а также d- и s-орбиталей, d- и р-орбиталей и т.д. Некоторые из примеров σ-связей приведены ниже.

Можно видеть, что в случае σ-связей область максимальной электронной плотности находится на линии, соединяющей ядра атомов.

Связь, образованная перекрыванием АО по обе стороны от линии, соединяющей ядра атомов (боковое перекрывание), называется π-связью . π-связь может образоваться при перекрывании р-р, р-d, f-p, f-d и f-f-орбиталей. Ниже приведены примеры образования π-связей.

Поскольку при образовании π-связей степень перекрывания орбиталей невелика по сравнению с σ-связями, энергия этих связей существенно ниже.

При наложении π-связи на σ-связь образуется двойная связь, например, в молекулах кислорода, этилена, диоксида углерода:


О=О, С=С, О=С=О.

При наложении двух π-связей на одну σ-связь возникает тройная связь, например, в молекулах азота, ацетилена, синильной кислоты:

Чем выше кратность связи, тем больше ее энергия и тем меньше длина связи.

Некоторые формы соединений невозможно объяснить с точки зрения их образования из возбужденных или невозбужденных атомов. Так, в молекуле метана все связи С-Н равноценны, что противоречит набору орбиталей у возбужденных и невозбужденных форм атома углерода. Последовательное обоснование этого и других фактов найдено в рамках концепции гибридизации АО.

Гибридизация - это смешение различных по энергии и форме орбиталей атома, приводящие к образованию такого же количества одинаковых по энергии и форме гибридных орбиталей. Эквивалентность гибридных орбиталей обусловливает не только образование равноценных по энергии связей, но и одинаковые валентные углы между связями, образуемыми этими орбиталями. Следует подчеркнуть, что гибридные АО образуются у одного атома, имеющего разные орбитали, причем объектом гибридизации являются орбитали, имеющие близкие значения энергии.

В случае метана гибридизация является результатом смешения одной s- и трех р-орбиталей в возбужденном состоянии атома углерода, так называемая sp 3 -гибридизация .

2p 2p
2s 2s

Образование гибридных орбиталей обусловливает энергетическую выгодность образующихся посредством этих орбиталей химических соединений. Это связано с двумя факторами.

Во-первых, гибридные орбитали ассимметричны, что обусловливает большую степень перекрывания при образовании ими химических связей и большую их прочность.

Во-вторых, валентные углы между гибридными орбиталями больше, чем негибридными, что обусловливает меньшую степень отталкивания между электронами связей, образуемых этими орбиталями, и делает молекулярные системы более стабильными.

При sp 3 -гибридизации продольные оси симметрии гибридных орбиталей находятся по отношению друг к другу под углом 109º28" – соответствующих их направлению к углам тетраэдра, центром которого является ядро атома.

Если объектами гибридизации является одна s и две р-орбитали, то такой тип гибридизации называется sp 2 - гибридизация, а углы между продольными осями этих орбиталей равны 120ºС и соответствуют минимальному отталкиванию между валентными электронами.

При смешении одной s- и одной р-орбитали имеет место sp-гибридизация. В этом случае валентный угол между гибридными орбиталями составляет 180˚ С.

Пространственная структура молекул определяется числом атомов в молекуле, гибридизацией орбиталей и числом неспаренных электронов на них, ответственных за образование связей.

Молекула, образованная двумя атомами, линейна. Если на внешней оболочке атома имеется два неспаренных р-электрона, то при перекрывании их АО орбиталями других атомов, образуется угловые молекулы. К таким атомам относятся атомы р-элементов VI группы (O, S, Se, Te), электронная конфигурация внешних оболочек которых приведена ниже.

ns np

Две р-орбитали с неспаренными электронами расположены перпендикулярно друг к другу, поэтому угол в молекулах H 2 S, H 2 Se и H 2 Te близок к 90˚. Вследствие отталкивания электронов валентный угол между связями в молекуле H 2 S несколько выше 90˚. У молекул воды угол между связями значительно больше и равен 105˚. Такую структуру можно объяснить, если принять, что это происходит sp 2 гибридизация АО кислорода при образовании воды. При этом две гибридные орбитали перекрываются s-орбиталями водорода. Отталкивание валентных электронов связей Н-О от неподеленных пар электронов кислорода обусловливает уменьшение валентного угла от 120 о до 105˚.

В методе предполагается, что химическая связь образуется двумя неспаренными электронами с антипараллельными спинами. При этом происходит обобществление электронов т. е. образуется электронная пара, принадлежащая двум атомам.

В 1927 г. немецкие ученые У. Гейтлер и Ф. Лондон провели квантово-механический расчет взаимодействия атомов водорода при образовании молекулы . В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. II. 3). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Например, в молекуле водорода нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание, и энергия системы возрастает (кривая 2). Квантово-механические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами.

В то же время электронная плотность в области между ядрами двух атомов с параллельными спинами электронов минимальна.

Механизм образования химической связи, разработанный для молекулы водорода, позднее был распространен и на другие молекулы. Рассмотрим образование химической связи в двухатомных молекулах элементов первого и второго периодов периодической системы элементов Менделеева, пользуясь методом Электронные конфигурации элементов первого и второго периодов приведены в табл. II.2. Напомним, что существует только одна -орбиталь, в то время как -орбиталей имеется три. Каждая орбиталь может содержать два электрона

Рис. II.3. Зависимость потенциальной энергии системы из двух атомов водорода от расстояния между ядрами: 1 - антипараллельные спины электронов; 2 - параллельные спины электронов

Та6лица II.2. Электронные конфигурации элементов первого и второго периодов и строение двухатомных молекул согласно методу ВС (см. скан)

с антипараллельными спинами. Значит, наибольшее число неспаренных электронов в -подуровне равно трем, как, например, у атома азота, электронная конфигурация которого

Поэтому при образовании молекулы азота обобществляются три пары электронов (тройная связь Атом кислорода, электронная конфигурация которого должен иметь два спаренных электрона на одной из трех -орбиталей. Таким образом, он обладает лишь двумя неспаренными электронами, которые участвуют в образовании химической связи. Вследствие этого в молекуле кислорода общими являются две пары электронов (двойная связь ).

Валентность.

В учении о химической связи широко используют очень важное понятие о валентности элементов. Способность атома к образованию химических связей называют в а-лентностью элемента. Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный атом образует связи. Согласно обменному механизму метода валентность элементов определяется числом содержащихся в атоме неспаренных электронов. Для s- и -электронов - это электроны внешнего уровня, для d-элементов - внешнего и предвнешнего уровней.

Спаренные (расположенные по два на атомных орбиталях) электроны при возбуждении могут разъединяться при наличии свободных ячеек того же уровня (разъединение электронов в какой-либо иной уровень невозможно). Например, валентность (В) элементов главной подгруппы I группы равна единице, так как на внешнем уровне атомы этих элементов имеют один электрон:

Валентность элементов главной подгруппы II группы в основном (невозбужденном) состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов:

При возбуждении этих атомов спаренные -электроны разъединяются в свободные ячейки -подуровня этого же уровня и валентность становится равной двум (возбужденный атом отмечен звездочкой):

Кислород и фтор во всех соединениях проявляют постоянную валентность, равную двум для кислорода и единице для фтора. Валентные электроны этих элементов находятся на втором энергетическом уровне, где нет более свободных ячеек:

В то же время сера - аналог кислорода - проявляет переменную валентность 2, 4, 6; хлор - аналог фтора - проявляет валентность 1, 3, 5, 7. Это объясняется наличием свободных d-ячеек на третьем энергетическом уровне:

При возбуждении

Для большинства d-элементов валентность в невозбужденном состоянии равна нулю, так как на внешнем уровне нет неспаренных электронов. Например, для железа

При возбуждении атома железа -электроны разъединяются и переходят на свободный -подуровень четвертого уровня, валентность становится равной двум:

Кроме электронов внешнего уровня валентными могут быть неспаренные d-электроны предвнешнего уровня, и валентность атома железа с учетом d-электронов может быть равна 3, 4, 5 и максимально 6.

Осмий - аналог железа - может проявлять максимальную валентность, равную восьми:

При возбуждении атома осмия -электроны разъединяются и переходят на свободный -подуровень шестого уровня, валентность становится равной двум. Неспаренные d-электроны увеличивают ее до шести. Кроме того, спаренные d-электроны имеют возможность разъединяться и переходить на свободный -подуровень пятого уровня, тогда максимальная валентность атома осмия становится равной восьми:

Донорно-акцепторный механизм образования ковалентной связи.

Рассмотренный механизм возникновения ковалентных связей путем обобществления неспаренных электронов двух атомов получил название обменного механизма. Образование ковалентной связи может происходить также при взаимодействии одного атома или иона с заполненной атомной орбиталью с другим атомом или ионом, имеющим вакантную (свободную) атомную орбиталь. Такой механизм образования

ковалентной связи называется донорно-акцепторным. Атом или ион, поставляющий пару электронов, называют донором, а атом или ион, к которому эта пара электронов перемещается, - акцептором. Согласно методу ковалентная связь по донорно-акцепторному механизму возникает при перекрывании вакантной орбитали акцептора с заполненными орбиталями донора или донорной группы. Поэтому донорная группа должна содержать по меньшей мере одну неподеленную пару электронов.

Рассмотрим образование химической связи по донорно-акцепторному механизму при взаимодействии молекулы аммиака с ионом водорода. Атом азота имеет на внешнем энергетическом уровне два спаренных b три неспаренных электрона.

Задача 236.
Описать с позиций метода ВС электронное строение молекулы BF 3 и иона BF 4 - .
Решение:
Электронная конфигурация валентного слоя атома бора 1s 2 2s 2 2p 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

Три неспаренных электрона возбуждённого атома могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами фтора (1s 2 2s 2 2р 5), имеющими по одному неспаренному электрону, с образованием молекулы BF 3 .

Для образования иона BF 4 - должен присоединиться один ион (1s 2 2s 2 2р 6), все валентные электроны которого спарены. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов из фторид-иона и одной валентной p-орбитали атома бора.

Задача 237.
Сравнить способы образования ковалентных связей в молекулах CH 4 , NH 3 и в ионе NH 4 + . Могут ли существовать ионы CH 5 + и NH 4 2+ ?
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Четыре неспаренных электрона возбуждённого атома углерода могут участвовать в образовании четырёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному, с образованием молекулы CH 4 .

Три неспаренных электрона невозбуждённого атома азота могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы NH 3 .

Для образования иона NH 4 + к молекуле NH 3 должен присоединиться один ион H + (1s 0), имеющим одну свободную s-орбиталь. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов атома азота и одной вакантной s-орбитали атома водорода.

Углерод (1s 2 2s 2 2р 2) может образовать соединение CH 4 , но при этом валентные возможности углерода будут исчерпаны (нет неспаренных электронов, неподелённых пар электронов и валентных орбиталей на валентном энергетическом уровне), ион CH 5 + образоваться не может.

Азот (1s 2 2s 2 2р 3) может образовать соединение NH 3 (за счёт трёх неспаренных 2р-электронов) и ион NH 4 + (за счёт донорно-акцепторного механизма между молекулой NH 3 и ионом H +) , но при этом валентные возможности азота будут исчерпаны (нет неподелённых пар электронов, свободных валентных орбиталей и неспаренных электронов на валентном уровне), ион NH 5 2+ образоваться не может.

Задача 238 .
Какой атом или ион служит донором электронной пары при образовании иона BH 4 - ?
Решение:
Электронная конфигурация атома бора 1s 2 2s 2 2р 1 . Электронное строение его валентного слоя в стационарном состоянии может быть представлено следующей графической схемой:

При возбуждении атом бора переходит в состояние 1s 2 2s 1 2p 2 , а электронное строение его валентного слоя соответствует схеме:

Три неспаренных электрона возбуждённого атома бора могут участвовать в образовании трёх ковалентных связей по обычному механизму с атомами водорода (1s 1), имеющими по одному неспаренному электрону, с образованием молекулы BH 3 .

Для образования иона BH 4 - к молекуле BH 3 должен присоединиться ион H - (1s 2), имеющий на валентном уровне свободную пару электронов. Связь осуществляется по донорно-акцепторному механизму за счёт пары электронов иона и свободной (вакантной) 2р-орбитали.

Задача 239.
Объяснить с позиций метода ВС способность оксидов NО и NО 2 образовывать димерные молекулы.
Решение:
На внешнем электронном слое атома азота содержится два спаренных 2s-электрона и три неспаренных 2р-электрона (2s 2 2р 3). Атом кислорода на внешнем слое содержит пару 2s-электронов и четыре 2р-электрона, из которых два неспаренных (2s 2 2р 4).

а) В молекуле NO связь осуществляется по обычному ковалентному механизму за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода, с образованием двух ковалентных связей в молекуле. Электронная схема молекулы NO имеет вид:

Таким образом, в молекуле NO атом азота содержит один неспаренный 2р-электрон. Поэтому между двумя молекулами N 2 О 2 может образоваться ковалентная связь по обычному механизму. Валентная схема молекулы N 2 О 2 имеет вид:

В димере N 2 О 2 атомы азота и имеют восьмиэлектронную устойчивую конфигурацию. Структурная формула имеет вид:

б) В молекуле NO 2 атом азота соединён двумя ковалентными связями с одним атомом кислорода, находящимся в невозбуждённом состоянии, связь образуется за счёт двух неспаренных электронов атома азота и двух неспаренных электронов атома кислорода. Второй атом кислорода соединяется с атомом азота по донорно-акцепторному механизму за счёт пары электронов атома азота и свободной валентной 2р-орбитали атома кислорода. Молекула NO 2 содержит один неспаренный электрон у атома азота.

Валентная схема молекулы NO 2 имеет вид:

Две молекулы NO 2 могут соединиться друг с другом, образовав димер N 2 O 4 . Связь между двумя молекулами NO 2 образуется по обычному ковалентному механизму за счёт неспаренных электронов атомов азота. Валентная схема димера N 2 O 4 имеет вид:

Структурная формула димера N 2 O 2 имеет вид:

Задача 240.
Объяснить с позиций метода ВС возможность образования молекулы С 2 N 2 .
Решение:
Электронная конфигурация атома углерода 1s 2 2s 2 2р 2. Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

При возбуждении атом углерода переходит в состояние 1s 2 2s 1 2р 3 , а электронное строение его валентных орбиталей соответствует схеме:

Электронная конфигурация атома азота 1s 2 2s 2 2р 3 . Электронное строение его валентных орбиталей в стационарном состоянии может быть представлено следующей схемой:

Для образования молекулы C 2 N 2 к каждому атому углерода присоединяется по одному атому азота. Связи между атомами углерода и азота образуются за счёт трёх неспаренных электронов углерода и трёх неспаренных электронов азота. Оставшийся неспаренный электрон одного атома углерода образует ковалентную связь по обычному механизму с неспаренным электроном другого атома углерода. Таким образом, в молекуле C 2 N 2 два атома углерода образуют ковалентную связь между собой и по три ковалентные связи с атомом азота по обычному механизму. Валентная схема молекулы C 2 N 2 будет иметь вид:

Структурная формула С 2 N 2 имеет вид:

Таким образом, молекула C 2 N 2 реально существует.

Теория валентных связей (МВС) применительно к комплексным соединениям была разработана Л.Полингом в 1930г. В настоящее время ее используют сравнительно редко, но она прекрасно служила около четверти века химии координационных соединений для объяснения некоторых свойств комплексов (пространственное строение, магнитные свойства). Несмотря на громоздкость количественных расчетов, большие проблемы в интерпретации разнообразных искажений октаэдрических комплексов, отсутствие предсказательной способности даже в случаях высокосимметричного геометрического строения координационных сфер и другие недостатки, МВС остается удобным инструментом, позволяющим наглядно на качественном уровне объяснить факт образования комплексов, дающим возможности оценивать взаимные предпочтения к связыванию, предрасположенность комплексов к гидролизу, поликонденсации, предсказывать состав и некоторые свойства карбонилов и родственных соединений и, конечно, объяснять, а во многих случаях и предсказывать магнитные свойства комплексов .

Основные положения МВС, касающиеся структуры комплексов формулируются следующим образом:

1. Связь между комплексообразователем и лигандами устанавливается по донорно-акцепторному механизму, причем в σ –связи лиганд является донором электронной пары ("кислотой Льюиса"), центральный атом – акцептором ("основанием Льюиса").

2. Мерой прочности связи служит степень перекрывания орбиталей. Для объяснения факта образования прочных связей при вполне конкретном пространственном расположении лигандов вокруг центрального атома, зачастую не совпадающим с пространственным расположением его собственных вакантных АО вводится понятие о гибридизации комплексообразователя, участвующих в σ –связывании. Тип гибридизации определяется числом, природой центрального атома и лигандов. Характер гибридизации определяет геометрическую форму комплекса.

3. Дополнительное упрочение комплекса обусловлено возникновением дополнительного π –связывания. При этом зачастую в качестве донора выступает электроположительный атом комплексообразователя, а акцептором – более электроотрицательный атом, за счет которого координируется лиганд. Такое донорно-акцепторное взаимодействие получило название дативного .



4. Магнитные свойства, проявляемые комплексом, объясняются особенностями заселения электронами орбиталей комплексообразователя. При наличии неспаренных электронов комплекс парамагнитен . Полное отсутствие неспаренных электронов обуславливает диамагнетизм комплексного соединения . Приближенное значение магнитного момента μ (в магнетонах Бора, μ В) можно рассчитать по формуле

, (4.10 )

где n – число неспаренных электронов.

Прежде чем разобрать несколько примеров применения МВС для анализа строения и свойств ряда комплексов,


полезно вспомнить некоторые сведения об электронном строении, валентных возможностях потенциальных комплексообразователей и лигандов, а также прокомментировать отдельные положения теории Л.Полинга.

Атомы второго периода, выступая в качестве комплексообразователей (Ве, В), а стало быть, устанавливая в заметной степени ковалентные связи с лигандами, ограничены в предельно достижимых КЧ, т.к. на валентном энергетическом уровне имеют только четыре орбиталями (2s – и 2р –). Элементы III-го и больших периодов располагают вакантными nd –орбиталями и за счет них могут проявить повышенные акцепторные свойства (увеличить КЧ до 6 и более, установить дополнительные π –связи с лигандами σ – и π –донорами). Однако, как уже отмечалось ранее (гл. 1.5), энергия nd –орбиталей довольно велика. В то же время их энергетическая выгодность для электронов усиливается при связывании рассматриваемого атома с сильно электроотрицательными элементами (особенно со F – , и лигандами, координирующимися атомами кислорода: О 2– , ОН – , ОН 2 и т.п.). Впервые предположение о возможности использования в связях внешних d –орбиталей было высказано в 1937г. Хиггинсом, а позднее оно нашло расчетное подтверждение.



Атомы переходных элементов располагают, к тому же еще и (n-1)d –орбиталями, которые гораздо более валентны, чем nd –орбитали, особенно у первых элементов декад, особенно в невысоких положительных степенях окисления. По мере заполнения (n-1)d –орбиталей электронами их акцепторные возможности ослабевают (усиливается вероятность использования в этом качестве nd –орбиталей), зато растут донорные свойства и, соответственно, усиливаются предпочтения к связыванию с лигандами σ –донорами и π –акцепторами.

Чтобы различать два вида комплексов, были введены понятия: внешнеорбитальные и внутриорбитальные (Таубе), спин-свободные и спин-спаренные (Ньюхольм), высокоспиновые и низкоспиновые (Оргел).

Участвующие в ковалентном связывании атомные орбитали должны быть сопоставимы по энергии и соответствовать друг другу по симметрии: располагаться таким образом, чтобы обеспечить перекрывание участками, в которых знаки волновых функций совпадают. Поскольку s –орбиталь среди валентных обычно имеет самую низкую энергию, она практически всегда используется в связывании, но из-за сферической симметрии она не может участвовать в π –перекрывании, а σ –взаимодействие может поддерживать в любом направлении (в том числе, и будучи задействована в процессах гибридизации). Симметрия р –орбиталей позволяет им участвовать как в σ –, так и в π –перекрываниях. В составе центрального атома для поддержания его КЧ (больше единицы: 6, 4, реже другие) р –орбитали предварительно гибридизуются с s – и, при необходимости, с d –орбиталями. Кроме того, симметрия р π –связывании (обычно, в составе донорных атомов лигандов). При высоких КЧ (4 и выше) в σ –связывании могут вовлекаться и d –орбитали подходящей симметрии (в квадратах и октаэдрах – расположенные лепестками вдоль прямоугольных осей координат d x 2 - y 2 , d z 2 , а при тетраэдрическом окружении – расположенные по биссектрисам координатных углов d xy , d xz , d yz). По причинам, которые будут пояснены позже, первые две орбитали имеют групповое обозначение d γ (или е g), а три другие – d ε (или t 2 g). Симметрия d –орбиталей позволяет им участвовать и в π –взаимодействии, причем, из-за некоторой направленности в сторону потенциального партнера они могут обеспечить более сильное перекрывание электронных облаков, чем то, что достигается при использовании в π –связях р –орбиталей сопоставимой энергии (близких по размеру).

Таблица 4.11

Форма и относительная прочность гибридных связей (Е * )

Наиболее часто встречающиеся типы гибридизации, соответствующие им (полученные расчетным путем) геометрические формы комплексов, а также относительная прочность σ –связей, образуемых с помощью соответствующих гибридных орбиталей, приведены в таблице 4.11.

Что касается третьего пункта, то поводом для постулирования этого положения стали примеры прочного связывания некоторых 4d – и 5d –элементов с лигандами, донорные свойства которых выражены достаточно слабо. Например, Pt(II), Hg(II), Au(III) лучше связываются с крупными галогенид-ионами, чем с F – ; они же образуют достаточно прочные комплексы с:PF 3 и ∶P(C 6 H 5) 3 , но вовсе не связываются с ∶РН 3 (напомним, что молекула ∶РН 3 очень неохотно связывается с таким активным акцептором электронной пары, как Н +). Эти факты были объяснены Полингом несколькими причинами, одна из которых – растущая кратность связи за счет дополнительного дативного π –взаимодействия комплексообразователей с конфигурациями d 8 , d 10 с d –орбиталями атомов Cl, Br, J, P. В свою очередь d –орбитали фосфора активней вовлекаются в связывание в составе таких лигандов, где их энергия понижена под влиянием собственных внутрилигандных сильно электроотрицательных атомов (F) или группировок (С 6 Н 5).

Существование разнообразных форм дополнительного π –связывания M–L было в дальнейшем подкреплено множеством разнообразных примеров. Важнейшие типы π–взаимодействия в комплексах могут быть систематизированы следующим образом (рис.4.26):

а) π d (M) → p (L) : частичный переход электронов с d р –орбитали лиганда;

б) π d (M) → d (L) : частичный переход электронов с d –орбитали металла на вакантные d –орбитали лиганда;

в) π p (M) ← p (L) : частичный переход электронов с р р –орбитали металла;

г) π d (M) ← p (L) : частичный переход электронов с р –орбитали лиганда на вакантные d –орбитали металла.

Теперь можно закрепить применение разобранных положений теории Полинга на конкретных примерах, при их анализе рассмотрим и магнитные свойства комплексов. Вначале обсудим состав, структуру и некоторые свойства комплексных соединений d –металлов.

Для первых d –элементов характерны высшие положительные степени окисления. Это формально означает, что в качестве комплексообразователя выступает полностью ионизированный атом, имеющий много пустых орбиталей и, соответственно, он должен предпочтительно связываться с лигандами σ – и π –донорами. В частности, для самыми стабильными комплексами Ti 4+ являются фторидный (в меньшей степени – другие галогенидные) и кислородсодержащие. Если не принимать во внимание полимерные соединения, то это анионный комплекс 2– и катионный 2+ (аквокомплекс " 4+ " очень сильно гидролизуется под сильным поляризующим воздействием центрального атома; в степени окисления +III аквокомплекс гидролизуется в гораздо меньшей степени: 3+). Электронная конфигурация Ti 4+ : 3d 0 4s 0 4p 0 , в σ –связывании с лигандами участвуют d 2 3 -гибридные орбитали, пустые d ε могут быть задействованы в дополнительном многоцентровом π d (M) ← p (L) –связывании:

Катионные комплексы Ti 4+ и Ti 3+ также являются внутриорбитальными, имеют октаэдрическую симметрию, но в отличие от 3+ (и 2–) дигидроксо-диаквотитан (IV) имеет искаженную структуру: связи с гидродроксо-группами короче, чем с молекулами воды (КЧ = 2+4). Это можно объяснить неравноценным π –связыванием (более сильными π –донорными свойствами ионов ОН –). В то же время 3+ является парамагнитной частицей, тогда, как 2– и 3– , 2+ и + , однако данные частицы (особенно последние) легко вступают в реакции замещения на F – или (менее охотно) на кислородсодержащие лиганды:

3– , 3+ , 3–)

· все комплексы Cr 3+ должны быть парамагнитными, т.к. комплексообразователь располагает тремя электронами;

(магнитные моменты всех комплексов Cr 3+ соответствуют наличию

трех неспаренных электронов ).

Отметим, что из-за частичной заселенности d ε –орбиталей, Cr 3+ не может проявить ни π –акцепторных свойств (в составе 3+), ни π –донорных (в составе 3–). Любопытно, что цианидные комплексы (карбонилы и другие комплексы с лигандами активными π –акцепторами) нередко проявляют высокое сродство к электрону, что позволяет в составе таких соединений стабилизировать у d -элементов аномально низкие (порой даже отрицательные) степени окисления. В частности К 3 по реакции с атомарным водородом (цинк в солянокислой среде) удается восстановить до К 6 . Причем в составе нового комплекса атом хрома принимает три дополнительных электрона на свои орбитали и, приобретая нулевую степень окисления, должен был бы, тем самым, воспроизвести электронную конфигурацию нейтрального атома 3d 5 4s 1 4p 0 с шестью неспаренными электронами. Однако комплекс К 6 диамагнитен. Подобные факты дали основания предположить, что в комплексах с активными π –акцепторами меняется электронное строение комплексообразователя: на d -подуровне в первую очередь заселяются d ε –орбитали (поначалу в соответствие с правилом Хунда, а при конфигурациях d 4 , d 5 и d 6 – попарно). Это позволяет, во-первых, сохранять (n-1)d γ –орбитали вакантными и использовать их для внутриорбитальной гибридизации и σ –связывания, а во-вторых, попарно заполненные d ε –орбитали могут быть задействованы для дополнительного π d (M) → p (L) –взаимодействия, что приводит к увеличению кратности связи комплексообразователь лиганд . Принимая во внимание эти рассуждения, образование комплекса 6– с точки зрения МВС может быть схематично показано следующим образом:

Особенность цианид-ионов в качестве лигандов подтверждает и сравнение комплексов хрома (II): при одинаковом электронном строении центрального атома (d 4) магнитные моменты 4– , с одной стороны, и 2+ , 4– , 4– ,…, с другой, отличаются:

В то же время МВС оказывается бессилен перед объяснением различий в оптических свойствах (окрашенности) и деталей пространственного строения: в отличие от цианидного комплекса все прочие, несмотря на однородный лигандный состав и равноценность участвующих в σ –связывании гибридизованных орбиталей центрального атома, характеризуются слабым тетрагональным искажением октаэдрической координации (КЧ = 4+2).

При дальнейшем повышении заряда ядра и одновременном увеличении числа электронов на валентных орбиталях наблюдается:

ü растущая стабилизация низких степеней окисления d –элементов;

ü усиление π –донорных свойств атомов (ионов) d –металлов. Соответственно постепенно ослабевает взаимодействие с лигандами σ – и π –донорами, растет предпочтение к связыванию с лигандами π –акцепторами, как следствие – комплексы становятся более разнообразными;

ü постепенный переход к внешнеорбитальным комплексам.

Рассмотрим некоторые комплексы Ni (II), Cu (II) и Cu (I).

Комплексы Cu (II) весьма разнообразны по лигандному составу: перечень только монодентантных лигандов, при связывании с которыми могут быть получены островные комплексы, включает в себя Н 2 О, OH – , Г – , NH 3 , SCN – , S 2 O 3 2– , NO 2 – и т.д. Весьма разнообразна их окраска: голубые, желто-зеленые, сине-фиолетовые,… . В то же время магнитные свойства комплексов одинаковы, а их структуры сходны или родственны:

– при электронной конфигурации центрального атома d 9 во всех комплексах иона Cu 2+ обнаруживается один неспаренный электрон;

– в большинстве комплексов реализуется тетрагонально искаженная октаэдрическая координация (КЧ = 4+2); порой оба или один из слабо связанных лигандов полностью покидают координационную сферу (при этом получаются или квадратные – КЧ=4 (нет тетраэдров! ), или квадратно-пирамидальные комплексы – КЧ=4+1):

КЧ = 4+2 (вытянутый октаэдр) КЧ = 4+1 (квадратная пирамида) КЧ = 4 (квадрат)
2+ , 4– , 2+ , 2+ , 4– 3 – , 2+ 2– , 2+ , 2– , 2–

С точки зрения МВС все комплексы Cu (II) являются внешнеорбитальными:

Напомним, что для формирования электронных облаков, ориентированных к вершинам квадратной пирамиды, в гибридизацию должна вовлекаться орбиталь d x 2 - y 2 . Она же необходима для образования плоско-квадратных комплексов, в то время как р z –орбиталь из гибридизации извлекается. Кроме того, следует отметить, что, в соответствие с МВС, в хлоридном и гидроксокомплексе возможно слабое дополнительное π –связывание (ионы Cl – являются слабыми π –донорами и π –акцепторами; ионы ОН – обладают гораздо более выраженными π –донорными свойствами, но центральный атом π –акцепторные свойства может реализовать только за счет высоколежащих 4d –орбиталей). Несмотря на объяснения способов ковалентного взаимодействия центрального атома и лигандов, МВС, по-прежнему, бессилен предложить причины, как спектральной активности, так и структурных особенностей комплексов. Любопытно, что комплексы Cu (I) наоборот, в подавляющем большинстве бесцветны, но гораздо более разнообразны в структурном плане, несмотря на более низкие координационные числа (КЧ: 2, 3, 4; координационные формы: линия, треугольник, тетраэдр – нет квадратов !):

Что касается комплексов s – и р –элементов, то кратко отметим лишь некоторые важные закономерности:

· В качестве комплексообразователей выступают ионы элементов (см. табл.4.7) с промежуточным поляризующим действием (электро-отрицательностью), однако важно понимать, что у большинства рассматриваемых элементов эти характеристики заметно выше, чем у d –металлов;

· Практически все потенциальные комплексообразователи образуют только октаэдрические комплексы (у Ве 2+ , В 3+ известны только тетраэдры; Al 3+ и Ga 3+ наряду с октаэдрами тоже порой образуют тетраэдрические комплексы; Sn 2+ , Pb 2+ имеют только тетраэдрические и тригонально-пирамидальные комплексы), что требует вовлечение в гибридизацию и σ –взаимодействие nd γ -орбиталей (за счет s – и р –орбиталей может быть реализовано только КЧ=4). Это предполагает связывание с сильно электроотрицательными атомами, а также то, что за счет вакантных nd ε -орбиталей потенциальные комплексообразователи являются достаточно активными π –акцепторами.

· В качестве лигандов в подавляющем большинстве случаев выступают активные σ – и π –доноры: ОН 2 (только при связывании с ионами, не вызывающими сильный гидролиз, т.е. п/д , которых минимально в данном ряду элементов), ОН – (при связывании с ионами, характеризующимися промежуточным уровнем п/д в ряду данных элементов), одноатомные лиганды: О 2– , F – . Р –элементы VI–го, V–го и, в меньшей степени, IV–го периодов имеют заполненные (n-1)d 10 –подуровни и, поэтому могут участвовать в π d (M) → d (L) –взаимодействии. Соответственно, для таких элементов даже в водной среде могут оказаться вполне конкурентными, выгодными связи М–Cl и Cl – в качестве потенциального лиганда. В ряде случаев стабилизируются комплексы и с более крупными галогенами. Те же элементы, но гораздо реже могут образовать островные воднорастворимые комплексы с лигандами S 2– и SH – .

· Все комплексы р –элементов диамагнитны и в подавляющем большинстве своем – бесцветны. Чрезвычайно редкие исключения возможны в случае комплексов с лигандами π –акцепторами.

Таблица 4.12

Составы важнейших островных

воднорастворимых комплексов р –элементов

IIа IIIа IVа VIа
2+ 2– 2– – 2– – –– –– ––
2+ 3+ – – 3– 3– 2– 2– ––
То же, что у Al 3+ 2– 2– 2– – AsO 4 3– ; – – – ––
То же, что у Al 3+ , кроме гидроксокомплекса , дополнительно – 3– 2+ 2– 2– 2– ; 2+ – – – – – ; + – 3– – ; 2– 2–
3– ; 2– 2– 2– ; 2+ – – 3+ – 2+ [Ро(OH) 6 ] 2– [РоCl 6 ] 2– ; [Ро(OH 2) 6 ] 2+

В заключение кратко обсудим применение идей МВС для объяснения состава, структуры и некоторых свойств достаточно своеобразных соединений: карбонилов и карбонильных комплексов d –элементов (известны также и полилигандные карбонилы: карбонилнитрозилы (M(CO) x (NO) y), карбонилгалогениды (M(CO) x Г y), карбонилгидриды (M(CO) x H y), карбонил-металлоцены (M(CO) x (C 5 H 5) y) и т.п., в том числе, полиядерные, содержащие несколько атомов d –металла). Состав большинства из них подчиняется правилам, сформулированным в 20-е годы ХХв. на рубеже становления квантово-механической модели строения атома: первое и модифицированное правило Сиджвика (правило 18 электронов ): наиболее стабильными являются комплексы, в составе которых центральный атом имеет полностью завершенную (n-1)d 10 ns 2 np 6 -конфигурацию . В расчет принимаются валентные электроны d –элемента и электроны лигандов, задействованные в связях M–L . Правило основано на предположении попарного заселения валентных орбиталей электронами центрального атома и донорно-акцепторном взаимодействии комплексообразователь–лиганд (лиганды-радикалы, типа NO, рассматриваются как доноры трех электронов; лиганды с протяженными π –системами являются донорами всех своих π –электронов).

Таблица 4.13

Состав известных карбонилов 3d -элементов

Объем и тематика данного учебника не позволяют выполнить анализ возможных причин, ограничивающих круг элементов, склонных к образованию карбонилов (табл.4.14). Отметим только, что с учетом родственных соединений они получены для всех d -металлов за исключением

Таблица 4.14

Круг d -элементов, входящих в состав карбонилов

Sc Ti V Cr Mn Fe Co Ni Cu Zn
Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
La Hf Ta W Re Os Ir Pt Au Hg

Nb, Ta, а также элементов подгрупп скандия и цинка. В то же время состав и структуры простейших карбонилов идеально согласуются с правилом Сиджвика и теорией Полинга. В частности, чередование мономерных (у Cr, Fe и Ni) и димерных молекул (у V, Mn и Со) есть результат того, что элементы нечетных групп имеют нечетное число валентных электронов, поэтому мономерные молекулы являются радикалами и способны объединяться за счет связи М–М (такие соединения принято называть кластерами ):

ü примеры боснование состава на основе модифицированного правила Сиджвика:

ü структуры на основе теории Полинга

КЧ Cr = 6 КЧ Fe = 5 КЧ Ni = 4

октаэдр тригональная тетраэдр

бипирамида

d 2 3 dsр 3 3

КЧ Mn = 6 КЧ Со = 4+1

октаэдр тригональная

бипирамида

d 2 3 dsр 3

У Fe, Co и некоторых тяжелых d –металлов известны "сложные карбонилы". Убедительных объяснений их состава и избирательного существования, пока не выработано. В то же время особенности их структуры (наличие связей М–М , число мостиковых или концевых молекул СО, пространственное окружение) можно предвидеть, применяя теорию Сиджвика/Полинга (см., например, учебник Дж.Хьюи "Неорганическая химия. Строение вещества и реакционная способность").