Меню Рубрики

Механизм анионной полимеризации. Анионная полимеризация: основные катализаторы, механизм и кинетика

При анионной полимеризации возникновение активного центра связано с образованием карбаниона Анионную полимеризацию часто подразделяют на собственно анионную и анионно - координационную. К последней относят полимеризацию присутствии металлорганических соединений, протекающую через стадию образования промежуточного комплекса катализаторов - мономер, в котором катализатор связан с мономером координационными связями. В зависимости от полярности среды и других условий реакции, механизм полимеризации может изменяться от чисто ионного к ионно - координационному и наоборот.

При полимеризации стирола в присутствии амида калия в жидком аммиаке каждая образующаяся макромолекула полистирола содержит группу NH 2 . При этом молекулярный вес полимера не зависит от концентрации катализатора и прямо пропорционален концентрации мономера. С повышением температуры полимеризации молекулярный вес полимера уменьшается. Обрыв цепи происходит при взаимодействии карбаниона с аммиаком в результате присоединения протона аммиака с регенерацией иона амида.

С амидами щелочных металлов полимеризуются также производные акриловой кислоты - метилметакрилат, акрилонитрил, метакрилонитрил. Эти мономеры содержат электроотрицательные заместители, т.е. являются акцепторами электронов и благодаря этому очень активны в анионной полимеризации.

Особенностью такой полимеризации является бифункциональное присоединение мономера. БМ присоединяется по одной функции. В реакции роста цепи при полимеризации участвуют 2 центра катализатора - металл и алкил (двухцентровый механизм полимеризации).

Механизм не изучен до конца и очень сложен. Предполагается, что при соединению молекулы мономера предшествует образование комплекса с катализатором.

В таких комплексах металл связан с мономером координационной связью, поэтому полимеризация, протекающая с образованием подобных комплексов, называется анионно - координационной полимеризацией.

При анионной полимеризации рост цепи осуществляется при участии карбониона или ионной пары; при этом концевая группа растущей макромолекулы, обладая высокой активностью в тоже время достаточно стабильно. Поэтому анионная полимеризация в отсутствие примесей, способна привести к обрыву цепи, во многих случаях может протекать без обрыва цепи до полного исчерпания мономера. В результате такой полимеризации образуются полимеры, макромолекулы которых содержат активные центры и способны инициировать полимеризацию. Эти полимеры называют «живыми» полимерами. При добавлении к такому полимеру новой порции мономера его молекулярный вес возрастает.

Особенность «живых» полимеров:

  • - при добавлении к «живым» полимерам или олигомерам другого мономера можно получить блоксополимеры (метод определения «живых» макромолекул);
  • - «живой» полимер для обрыва цепи можно вводить различные соединения и получать полимеры с разнообразными концевыми функциональными группами, что открывает большие возможности в синтезе блоксополимеров с гетероцепными олигомерами.

В последние годы широкое распространение получила анионно - координационная полимеризация присутствии комплексных катализаторов Циглера - Натта. (Этот метод используется в промышленном синтезе стереорегулярных полимеров.) В состав катализаторов Циглера - Натта входят металлоорганические соединения I-III групп и хлориды IV-VII групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана, которые легко образуют координационные связи. Такие комплексные катализаторы нерастворимы и их строение не установлено, но предполагается, что они представляют собой биметаллический комплекс с координационными связями.

Зависимость скорости полимеризации от конформации молекулярной цепи синтетических полимеров впервые была показана на примере полимеризации N - карбоксинангидридов аминокислот с образованием полипептидов. При этом реакция протекает в 2 стадии, которые различаются по скорости. 1 стадия протекает относительно медленно до тех пор, пока не образуется олигомер, способный свернуться в спираль, затем реакция идет с высокой скоростью с образованием высокомолекулярного полипептида. Присутствие в реакционной смеси изомерных аминокислот резко снижает скорость полимеризации.

Затем представления по направляющей роли конформации образующейся молекулярной цепи в процессе полимеризации были перенесены на винильные мономеры. С этой позиции рассматривается влияние природы растворителя и температуры на стереоспецифичность полимеризации винильных соединений. Так, было показано, что полимеризации полимеризация стирола в присутствии трифенилметилкалия в бензоле приводит к образованию атактического полистирола, а с тем же катализатором в гексане получается стереорегулярный полимер. С позиции так называемой спиральной полимеризации это объясняется большой устойчивостью спиральной конформации растущих макромолекул полистирола при полимеризации в плохом по сравнению бензолом растворителе - гексане. Аналогичным образом объясняются образование стереорегулярного полистирола при полимеризации присутствии бутиллития при -30°С среде углеводородов и отсутствие стереоспецифичности при полимеризации стирола с этим катализатором при более высокой температуре. Такое новое направление в изучении механизма стереоспецифической полимеризации является чрезвычайно интересной, хотя для создания стройной концепции еще мало экспериментальных данных.

Процесс анионной полимеризации протекает с участием веществ основного характера: щелочные металлы; производные щелочных металлов (алкоголяты, амиды, Ме-органические соединения); чаще всего натрийнафталиновый комплекс.

Механизм роста цепи по Li-органическому соединению при формировании микроструктуры при анионной полимеризации диеновых углеводородов:

Из схемы реакции видно, что осуществляется предварительная ориентация молекул мономера и внедрение ее по месту поляризованной связи.

Обрыв цепи в реакциях анионной полимеризации может протекать по следующим механизмам дезактивации активных центров:

  1. перенос дегидрированного Н с конца растущей цепи

~CH 2 -C - H-R + Me + → ~CH=C - H-R + MeH

  1. захват протона растущей цепи и ограничение роста цепи наблюдается при полимеризации в жидком аммиаке или растворителе, способном расщеплять протон.
  2. прекращение растущего макроиона за счет его превращения в ион с пониженной реакционной способностью возможно вследствие изомеризации концевой группы

~CH 2 -C - CH 3 -COOCH 3 Na + → ~CH 2 -CCH 3 =C-O - OCH 3 Na +

При анионной полимеризации процесс может идти избирательно и формироваться микроструктура. Например, изопрен при полимеризации на щелочном металле в растворителе пентане.

Механизм полимеризации в присутствии амидов щелочных металлов.

Инициирование

KNH 2 → NH 3 K + + N - H 2

N - H 2 + CH 2 =CH-R → NH 2 -CH 2 -C - H-RK +

Рост цепи

NH 2 -CH 2 C - HRK + → CH 2 CHR NH 2 -CH 2 CHR-CH 2 -C - HR

Обрыв цепи

~CH 2 -C - HRK + + NH 3 → ~CH 2 -CH 2 R +N - H 2 K +

Механизм для металлоорганических катализаторов.

  1. Инициирование

MeR ’ + CH 2 =CH-R → R ’ -CH 2 -C - HRMe +

Рост цепи

R ’ -CH 2 -C - HRMe + → CH 2 =CHR R ’ CH 2 -CHR-CH 2 -C - HRMe +

Обрыв цепи

~CH 2 -C - HRMe + → ~CH=CHR + MeH


Лекция №6

Анионно-координационная полимеризация: полимеризация диенов, полимеризация на комплексных катализаторах Циглера-Натта на П-аллильных комплексах; получение стереорегулярных полимеров.

Ионно-координационная полимеризация отличается от ионной тем, что акту присоединения мономера предшествует его координация на активном центре или катализаторе. Координация мономера может иметь место как при анионной, так и при катионной полимеризации, но для анионной полимеризации она более характерна.



Цифры в названных изомерных звеньях обозначают номер атома углерода,

входящего в основную цепь молекулы изопрена. Впервые полимеризацию изопрена на металлическом Na в 1932 году осуществил Лебедев. Впоследствии изопрен полимеризуют на Li-органических соединениях в среде углеводорода. Координация мономера происходит на полярном, но недиссоциированном активном центре - C – Li - в результате чего мономерное звено принимает конфигурацию, соответствующую

1,4 цис-структуре

Добавление всего лишь нескольких процентов электронодонорных соединений (эфир, тетрагидрофуран, алкиламин) резко изменяет микроструктуру образующегося полиизопрена – преобладающей становится 1,4-транс (80-90%) и 3,4-структура (10-20%). Электоронодонорные соединение поляризует связь C -Li до разделения на ионы

В этом случае микроструктуру цепи полимера определяет координация иона Li с концевым звеном макро-иона, которое имеет аллильную структуру. В аллильной структуре π-электроны делокализованы и поэтому два крайних атома углерода по электронной плотности эквивалентны. Для карбоаниона это выражается следующим образом:

С учётом этого координацию иона Li с конечным звеном цепи изопрена, несущим заряд можно представить циклической структурой:

Мономер может присоединяться как к 1-му, так и к 3-му атому С, что приводит к 1,4-транс или 3,4-структуре.

В 1955 году немецкий химик Циглер предложил каталитическую систему, состоящую из 3-этилалюминия и хлорида титана ((С 2 Н 5) Аl+ТiСl 4) для синтеза полиэтилена в мягких условиях (50-80 С и р=1МПа). Итальянский химик Натта применил эту систему для синтеза полиэтилена и полистирола, и объяснил механизм действия этих катализаторов. В настоящее время группе катализаторов Циглера-Натта относят каталитические системы, образующиеся при взаимодействии органических соединений непереходных элементов (1-3 гр.) и солей переходных элементов (4-8 гр.).Известны гетерогенные и гомогенные катализаторы Циглера-Натта. На первых получают в основном изотактические полимеры, а на вторых изо- и синдиотактические. Детальный механизм полимеризации олефинов на катализаторах Циглера-Натта до сих пор обсуждается, однако установлено, что на первой стадии происходит алкилирование ТiСl 4 3-этилалюминием и далее присоединение мономера идёт по лабильной связи ТiС.

Существует 2 точки зрения:

Согласно первой на поверхности кристаллического ТiСl 4 образуется активный центр Тi 3+ , на котором мономер координируется, а затем внедряется по связи Тi-С.

Координация способствует ослаблению связи Тi–С, а также обеспечивает присоединение мономера в определённом пространственном положении.

Согласно второй точке зрения механизм взаимодействия предусматривает участие R Аl в активном центре, представляющий собой координационный комплекс, в котором атом Тi образует 3-х центровую 2-х электронную связь с аллильной группой, а атом Аl – 2-х центровую координационную связь с атомом Сl хлорида титана (мостиковые связи).

В реакции инициирования мономер координируется на положительно поляризованном атоме Тi, образуя π-комплекс, который затем переходит в σ-комплекс, в результате этих превращений мономер внедряется по связи Ti-C и структура активного центра последовательно воспроизводится.

Последующие акты роста протекают аналогично. Из схемы видно, что на активном конце цепи находится отрицательный заряд, поэтому полимеризацию на катализаторах

Циглера-Натта относят к анионно-координационной.

Обрыв цепи при полимеризации на этих катализаторах происходит в результате тех же реакций, что и при анионной полимеризации, в частности в результате переноса гидрид-иона на мономер или противоиона. В настоящее время методом анионно-координационной полимеризации получают стереорегулярные каучуки, полиолефины.


Лекция №7

Сополимеризация, ее значение как способа модификации полимеров. Типы сополимеризации: идеальная, блоксополимеризация, привитая. Состав сополимера. Закономерности процесса сополимеризации.

Сополимеризация - совместная полимеризация двух или более мономеров. Она широко используется в практике, так как является простым и очень эффективным методом модификации свойств крупнотоннажных полимеров. Наиболее изучена двухкомпонентная или бинарная сополимеризация. При сополимеризации добиваются лучших свойств каждого из гомополимеров.

Например, полиэтилен обладает высокой эластичностью, морозостойкостью, но плохими адгезионными свойствами. Введение в макромолекулу полиэтилена до 30% звеньев винилацетата придает полимеру свойство клея-расплава.

Для повышения морозостойкости полипропилена в макромолекулу вводят звенья бутил - каучука (температура хрупкости падает до -40 0).

Сополимеризация заключается в получении ВМС из смеси двух или более мономеров, которые называются сомономерами. Макромолекулы сополимеров состоят из звеньев всех мономеров, присутствующих в исходной реакционной смеси. Каждый сомономер придает полимеру свои свойства, при этом свойства полимера не являются суммой отдельных гомополимеров. Закономерности сополимеризации сложнее, чем гомополимеризации. Если при гомополимеризации имеется один тип растущего радикала и один мономер, то при бинарной сополимеризации существует 4 типа растущих радикалов. Например, если 2 мономера А и В взаимодействуют со свободными радикалами R · , возникающие при распаде инициатора, образуются первичные R · , один из которых имеет концевое звено А, а второй- В.

R · +А R А ·

R · +В R В ·

R А · и R В · могут реагировать с А и В:

А+ RА А · (К АА)

В+ RА В · (К АВ)

А+ RВ А · (К ВА)

В+ RВ В · (К ВВ)

Отношение константы скорости реакции каждого R · со “своим” мономером к константе скорости реакции с “чужим ” мономерам называют константами сополимеризации, или относительными активностями r мономеров.

r A = К АА / К АВ

r B = К ВВ / К ВА

Величины r A и r B определяют состав макромолекул сополимера в большей мере, чем соотношение мономеров в исходной реакционной смеси. Если относительные активности сомономеров приблизительно равны 1, то каждый R · с равной вероятностью взаимодействует как со своим, так и с чужим мономером. Присоединение мономера в цепь случайное и образуется статистический сополимер. Это идеальная сополимеризация. Реакции сополимеризации могут протекать по радикальному и ионному механизмам. При ионной сополимеризации на константы оказывают влияние природа катализатора и растворителя, поэтому полимеры, получаемые из одних и тех же мономеров, но в присутствии разных катализаторов, имеют разный химический состав. Например, сополимер стирола и акрилонитрила, синтезированный из эквимолекулярной смеси мономеров в присутствии перекиси бензоила, содержит 58% звеньев стирола, а при анионной сополимеризации на катализаторе С 6 Н 5 МgВr- 1%, а при катионной полимеризации в присутствии SnCl 4 -99%.

В практическом отношении интересны блок- и привитые сополимеры. В их макромолекулах существуют участки большой протяженности и звеньев каждого сополимера. Блок-сополимеры получают разными методами. Во-первых, при анионной полимеризации одного мономера возникшие «живые» цепи могут инициировать полимеризацию другого мономера:

ААА - + n В = - ААА(В) n-1 В -

Во-вторых, при интенсивном механическом воздействии на смесь разных полимеров происходит деструбция цепей и образующихся макрорадикалов. Макрорадикалы, взаимодействуя между собой, формируют блок-сополимеры. Блок-сополимеры могут образовываться также из олигомеров за счет взаимодействия концевых функциональных групп. Привитые сополимеры получают взаимодействием мономера с полимером и реже взаимодействием двух разных полимеров. Так как в этих процессах используется реакция передачи цепи с превращением полимерных молекул в макрорадикалы, в состав макромолекул вводят атомы или группы с повышенной подвижностью (Вr,что ускоряет реакцию передачи цепи). Если в реакционной среде находится полимер на основе мономера СН 2 =СН-X, СН 2 =СН-Y, то процесс образования привитого сополимера протекает сложным образом. Сначала возникает серединный макрорадикал:

Затем этот макрорадикал инициирует полимеризацию мономера с образованием боковых ветвей:

Получение блок- и привитых сополимеров всегда сопровождается образованием гопополимера из присутствующего в зоне реакции мономера.

Состав сополимера.

Состав сополимера не равен составу исходной мономерной смеси. Зависимость между ними может быть установлена кинетическими и статистическими методами.

1. Кинетический метод. В большинстве случаев реакционная активность центров на концах цепей определяется лишь природой концевого звена, поэтому при выводе уравнения состава учитывают четыре реакции роста цепи между мономерами А и В и растущими активными цепями, а также константу сополимеризации. Дифференциальное уравнение состава сополимера выглядит так:

d[A]/d[B]=[A](r A [A]+[B])/[B](r B +[A])

Уравнение связывает текущие или мгновенные концентрации мономеров в сополимеры и в мономерные смеси через величины относительных активностей мономеров. Графической формой этого уравнения являются кривые состава сополимера, вид которых однозначно определяется r A и r B .

1- состав сополимера равен составу мономерной смеси r A =r B =1 (вид идеальной сополимеризации), распределение звеньев статистическое.

2- r A >1, r B <1

3- r A <1, r B <1

4- r A <1, r B >1. Сополимер обогащен более активным мономером во всей области состава.

5- r A → 0, r B →0. В сополимере строгое чередование мономерных звеньев при любом составе мономерной смеси. Образуется сополимер состава 1:1.

6- r A → 0, r B <1. Для сополимеров также характерно чередование мономерных звеньев, но оно не является регулярным.

Анионная полимеризация – это процесс образования макромолекул с участием отрицательно заряженного концевого атома растущей цепи.

В промышленности синтетического каучука анионное инициирование применяют для полимеризации и сополимеризации диеновых мономеров и при получении силоксановых каучуков.

Катализаторами анионной полимеризации диеновых мономеров являются щелочные металлы (Li, Na, K) и их алкилы. В этом качестве в основном используется втор -бутиллитий.

Активной является неассоциированная форма инициатора, концентрация которой определяется равновесием:

N C 4 H 9 Li + n-1

С молекулой мономера взаимодействует неассоциированная форма инициатора.

При взаимодействии щелочных металлов и ненасыщенных мономеров получают бифункциональные инициаторы анионной полимеризации.

Вследствие передачи электрона от металла к мономеру (окислительно-восстановительная реакция) сначала образуются анион-радикалы:

Радикальный и ионный центры в нем не локализованы, поэтому образуемый ион-радикал можно представить следующим образом:

После присоединения следующей молекулы мономера активные центры разной природы локализуются и в результате реакции рекомбинации в системе остаются только анионные активные центры:

Скорость анионной полимеризации зависит не только от концентрации инициатора и мономера, но и от природы растворителя и возрастает с увеличением его полярности.

При анионной полимеризации бутадиена и изопрена в углеводородных растворителях суммарный процесс включает только стадии инициирования и роста цепи.

Реакции обрыва и передачи цепи отсутствуют или идут с очень малыми скоростями. При этом образуются так называемые “живущие полимеры”, концевые группы которых сохраняют способность к присоединению мономера и после завершения полимеризации.

Стадию роста цепи можно представить схемой, по которой каждый акт присоединения молекулы мономера происходит путем ее внедрения между ионом и противоионом или по связи углерод–металл в сильно-поляризованной молекуле. При этом каждому акту присоединения может предшествовать образование промежуточного комплекса (анионно-координационная полимеризация).

На одном и том же активном центре в зависимости от природы металла, свойств среды и температуры может протекать анионная полимеризация с координацией мономера или без нее. В неполярных средах наибольшую координирующую способность имеют литийсодержащие инициаторы. Катион Li + имеет самые малые размеры ионного радиуса в ряду Li, Na, K, Rb, Cs и самую высокую электроотрицательность.

При полимеризации диеновых мономеров в образовании кротильных соединений лития наблюдается делокализация заряда между a и g - углеродными атомами.

В результате кротильные соединения лития имеют p-аллильную структуру в отличие от s-аллильных структур для других металлов.

Литиевые p-комплексы имеют преимущественно цис-конфигурацию. На литийорганических активных центрах в неполярных средах формируются 1,4-цис -структуры как для полибутадиена, так и для полиизопрена.

Катализаторами полимеризации органоциклосилоксанов являются сильные основания.

Механизм анионной полимеризации октаметилциклотетрасилоксана можно представить следующей схемой.

1) Инициирование:

2) Рост цепи

3) Реакция передачи цепи. Основная причина, вызывающая обрыв цепи обусловлена реакцией калий-силоксанолятных групп с водой:

Поэтому в промышленностидля получения низкомолекулярных (жидких) силоксановых каучуков используют высококонцентрированные водные растворы щелочей, а для получения высокомолекулярных силоксановых каучуков в качестве инициатора используют продукт взаимодействия сухой щелочи с Д 4 (олигосилоксанолят калия).

Полимеризация основаниями имеет ряд преимуществ перед полимеризацией кислыми катализаторами. Она позволяет за короткое время при концентрациях катализатора 10 -2 -10 -4 % (мас.) получать как высокомолекулярные силоксановые каучуки (с молекулярной массой до 10 6 без дозревания), так и жидкие каучуки. При этом возникает возможность регулирования молекулярной массы синтезируемого каучука. В отличие от использования кислотного катализатора при щелочном катализе нет необходимости нейтрализации концевых активных центров путем водной отмывки. При щелочном катализе нейтрализация активных центров осуществляется путем их стабилизации аэросилом или ортофосфорной кислотой.

Инициаторами анионной полимеризации служат нуклеофилы – амид-анион, алкоксид-анион, литий- и натрийорганические соединения. Пример – полимеризация акрилонитрила:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Анионная полимеризация характерна для мономеров, содержащих у двойной связи электроноакцепторные заместители – акрилонитрила, алкилакрилатов и др., а также стирола.

По анионному механизму полимеризуются также циклические мономеры – эпоксиды:

Механизм реакции

а) инициирование:

б) рост цепи:

в) обрыв цепи:

Координационная полимеризация

Инициирование происходит под действием катализаторов, открытых в 1953 г. К.Циглером и Дж.Натта, получившим за эту работу Нобелевскую премию в 1963 г.

Катализаторы Циглера-Натта представляют собой комплексы галогенидов переходных металлов с металлорганическими соединениями: TiCl 4 + Al(C 2 H 5) 3 .

Механизм реакции

Катализатор выполняет роль матрицы, на которой строится полимерная цепь. Это позволяет контролировать процесс в большей степени, чем в других видах полимеризации.

Поликонденсация

Поликонденсация – это последовательное соединение молекул мономеров в результате реакции функциональных групп. При этом выделяются низкомолекулярные соединения (чаще всего вода).

Например:

Примером поликонденсации является также образование полипептидов из аминокислот.

ПОНЯТИЕ О СТЕРЕОРЕГУЛЯРНОСТИ ПОЛИМЕРОВ

При полимеризации пропилена образуется полимер, у которого атомы, связанные с метильной группой, хиральны. Такой полимер может иметь различную пространственную структуру:

а) атактический полимер:

Образуется при радикальной полимеризации пропилена.

б) синдиотактический полимер:

в) изотактический полимер:

Образуется при полимеризации пропилена с катализатором Циглера-Натта.

Полимеризация сопряженных диенов

Сопряженные диены могут полимеризоваться, образуя цепи либо за счет 1,2-присоединения мономерных молекул, либо за счет 1,4-присоединения.

Полимерные цепи диенов в отличие от алкенов содержат двойные связи.

При 1,4-полимеризации двойные связи находятся в основной цепи, и заместители относительно них могут находиться в цис - или транс -положении:

Первоначально натуральный каучук получали из млечного сока гевеи бразильской (Hevea brasiliensis), в котором он содержится в количестве до 40-50%.

По химическому строению натуральный каучук представляет собой стереорегулярный цис -1,4-полиизопрен:

Пространственная структура такой цепи спиралеобразна. При механическом воздействии она сжимается подобно пружине, а затем снова разжимается. Этим объясняется исключительно высокая эластичность каучука.

Другой природной разновидностью полиизопрена является гуттаперча , выделяемая из сока деревьев семейства сапотовых, она имеет структуру транс -1,4-полиизопрена:

Выпрямленность изопреновых звеньев придает цепям стержнеобразную пространственную структуру, причем они могут плотно укладываться одна вдоль другой. Поэтому, в отличие от липкого и эластичного каучука, гуттаперча при комнатной температуре имеет твердую и хрупкую консистенцию.

Сырой каучук представляет собой очень эластичную и непрочную клейкую массу. Он применяется, в частности, для изготовления лейкопластырей.

При нагревании каучука с серой – вулканизации – происходит частичная сшивка полимерных цепей, и получается эластичный и гораздо более прочный на разрыв материал – резина :

При нагревании с большим количеством серы каучук образует твердый материал – эбонит .

Каучук и получаемые из него материалы играют огромную роль в технике и в быту. Поэтому очень скоро натуральный каучук, выделяемый из растительного сырья, перестал удовлетворять технические потребности, и перед химиками стал вопрос о получении синтетического каучука.

Первый синтетический каучук – полибудиен – в промышленном масштабе был получен в 1932 г. С.В.Лебедевым, разработавшим метод получения бутадиена из этилового спирта:

В 1936 г. в США был получен промышленный синтетический хлоропреновый каучук:

Хлоропреновый каучук по некоторым свойствам уступает природному, но более устойчив к воздействию нефти и масел.

Сополимер бутадиена и стирола, созданный в Германии в 1928 г. – экономически выгодный заменитель натурального каучука:

Из сополимера бутадиена и акрилонитрила получают резиновые изделия с высокой стойкостью к действию бензина, керосина и масел:

ПОЛИМЕРЫ В ТЕХНИКЕ И ФАРМАЦИИ

Ионная полимеризация сопровождается координацией мономера на поверхности катализатора и отличается от радикальной реакции тем, что:

· растущие частицы (ионы) более активны, чем свободные радикалы;

· инициаторы каталитические (восстанавливают структуру, а не расходуются необратимо) и позволяют получать стереорегулярные полимеры ;

· суммарная энергия активации меньше по сравнению с радикальной, и это позволяет снизить температуру реакции вплоть до отрицательных температур;

· среда - не вода, а растворитель с сольватирующим действием на ионы;

· большие значения ММ и узкое ММР полимера, высокая степень химической регулярности макромолекул при полном отсутствии разветвлений.

Она уступает радикальной полимеризации по сложности технологического оформления процесса и по масштабам применения при производстве большинства промышленных полимеров.

Катализаторами катионной полимеризации являются доноры протона – сильные протонные кислоты (H 2 SO 4 ) и кислоты Льюиса (AlCl 3 , BF 3 , TiCl 4 ). Последние образуют с сокатализатором (Н 2 О, HCl) комплексные соединения, которые на стадии инициирования создают с мономером ионную пару:

СН 2 = С(СН 3 ) 2 + Н + [ВF 3 . ОН] - (СН 3 ) 3 С + [ВF 3 . ОН] - .

Низкая энергия активации (до 65 кДж/моль ) обеспечивает высокую скорость процесса, увеличивающуюся со снижением температуры (температурный коэффициент отрицателен). Например, под действием BF 3 изобутилен полимеризуется за несколько секунд при -100 о С до полимера большой ММ. В процессе роста цепи ионная пара реагирует со следующей молекулой мономера, а на конце цепи сохраняется карбкатион с противоанионом:

(СН 3) 3 С + [ВF 3 . ОН] - +СН 2 =С(СН 3) 2 →(СН 3) 3 СН 2 (СН 3) 2 С + [ВF 3 . ОН] - и т. д.

Поляризация молекулы мономера обеспечивает регулярное присоединение звеньев («голова к хвосту»), а обрыв цепи невозможен рекомбинацией одноименно заряженных ионов. Поэтому ионная пара при уменьшении кинетической подвижности макроиона (с ростом его размеров) перестраивается в макромолекулу с двойной связью или образует гидроксильную группу и регенерирует комплекс катализатор-сокатализатор или катализатор:

Катализатор многократно инициирует рост цепи, поэтому при синтезе эффективны даже малые его количества. Энергия активации реакции обрыва цепи через разрыв σ-связи больше, а энергия активации реакции роста цепи, которая определяет весь процесс синтеза и связана с атакой двойной связи мономера ионом карбония, - меньше, чем при свободнорадикальной полимеризации. Поэтому повышение температуры и ведет к снижению скорости реакции синтеза и средней молекулярной массы полимера.

Катализаторами анионной полимеризации являются щелочные металлы, их амиды, алкилы или комплексы с ароматическими углеводородами. Полимеризацию с амидом щелочного металла проводят в среде жидкого аммиака, выполняющего роль растворителя и передатчика реакционной цепи:



Обрыв цепи происходит путем ее передачи на растворитель:

Регенерированный катализатор начинает новую цепь, и реакция идет до конца при регулярном присоединении мономера «голова к хвосту». Полимеризация мономеров щелочным металлом проходит через образование ион-радикала и затем бианиона, по обоим концам которого и присоединяются последующие молекулы до образования макромолекулы:

Регулирование молекулярной массы полимера улучшается каталитическим комплексом щелочного металла с нафталином в среде полярного растворителя тетрагидрофурана (полимеризация с переносом электрона ). Образующийся комплекс передает свой электрон мономеру, а нафталин регенерируется:

В присутствии металлического натрия вновь образуется комплекс, повторяются акты инициирования и роста цепи. При отсутствии примесей обеспечивается рост цепи без обрыва до полного исчерпания мономера с образованием «живых» полимеров, состоящих из заряженных отрицательно макроионов. При добавлении того же мономера продолжается рост цепи, а порции другого мономера - образуется блок-сополимер .

Алкилы щелочного металла отличаются от других систем высокой способностью координировать молекулу мономера, поэтому полимеризацию изопрена с н -бутиллитием называют анионно-координационной :

Молекула изопрена внедряется в поле двух центров катализатора - между отрицательно заряженным алкильным остатком и положительно заряженным ионом лития (двухцентровый механизм ), принимая цис -конфигурацию, которая и сохраняется при последующих актах роста цепи. Так получают синтетический аналог НК, а процесс такого синтеза в среде неполярных или малополярных растворителей, когда полярность растворителя меньше полярности мономера, является оптимальным. Так же получают полимеры с концевыми функциональными группами – карбоксильными (+СО 2 ) или гидроксильными (+оксид этилена) и звездообразной структуры (в CCl 4 ).



Ионно-координационная полимеризация виниловых мономеров обладает высоким координирующим действием, специфичным для каждого из катализаторов Циглера-Натта , но наиболее востребованы комплексы хлоридов титана с алкилпроизводными алюминия . Они образуют четырехчленный комплекс, который координирует молекулу этилена или его производного у атома титана с образованием π-комплекса и поляризует ее:

После разделения зарядов одна из связей в комплексе разрушается, и в его структуру входит молекула мономера, образуя новый шестичленный цикл. При последующей его перестройке в новом четырехчленном цикле остается один из атомов углерода молекулы мономера и выделяется исходная этильная группа вместе с другим атомом углерода молекулы мономера:

Таким образом, разрыв π-связи в молекуле мономера приводит к образованию σ-связи молекулы мономера с атомом углерода этильной группы и возникновению новой структуры исходного комплекса, в которой с атомами титана и алюминия соединен уже углерод молекулы мономера. Следующая молекула мономера реагирует так же, вытесняя образующуюся полимерную молекулу из структуры катализатора и сохраняя свое строго определенное пространственное расположение относительно плоскости цепи:

Мономер присоединяется только по типу «голова к хвосту», в макромолекулах отсутствуют разветвления и возможны два вида стереорегулярных структур: изотактическая и синдиотактическая.

При полимеризации диеновых мономеров образуется π-аллильный комплекс мономера с переходным металлом, который также работает по принципу вытеснения предыдущего мономерного звена последующим. Цепь обрывается путем отщепления растущей макромолекулы от каталитического комплекса и передачи цепи на мономер или при реакции с молекулой триалкилалюминия, не связанного с TiCl 3 :

Каталитические системы обеспечивают формирование регулярных полимеров, а наиболее важна цис- 1,4-структура (табл.1.6), придающая полимеру высоко-эластические свойства в широком интервале температур. Структура транс -1,4-полидиенов придает им свойства пластмасс - синтетических заменителей гуттаперчи. Структуры типа 1,2 и 3,4 изо- и синдиотактических полидиенов по свойствам близки к структурам виниловых стереорегулярных полимеров. В отличие от атактических, стереорегулярные полимеры с комплексными катализаторами при регулярно чередующихся звеньях имеют правильное пространственное расположение заместителей вдоль цепи.

Таблица 1.6.

Типы структур полибутадиена и полиизопрена,