Меню Рубрики

Мат ожидание функции случайной величины. Математическое ожидание и его свойства

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины .

К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание приближенно равно среднему значению случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Если случайная величина характеризуется конечным рядом распределения:

Х х 1 х 2 х 3 х п
Р р 1 р 2 р 3 р п

то математическое ожидание М(Х) определяется по формуле:

Математическое ожидание непрерывной случайной величины определяется равенством:

где – плотность вероятности случайной величины Х .

Пример 4.7. Найти математическое ожидание числа очков, выпадающих при бросании игральной кости.

Решение:

Случайная величина Х принимает значения 1, 2, 3, 4, 5, 6. Составим закон ее распределения:

Х
Р

Тогда математическое ожидание равно:

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

М (С) = С.

2. Постоянный множитель можно выносить за знак математического ожидания:

М (СХ) = СМ (X).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Пример 4.8 . Независимые случайные величины X и Y заданы следующими законами распределения:

Х Y
Р 0,6 0,1 0,3 Р 0,8 0,2

Найти математическое ожидание случайной величины XY.

Решение .

Найдем математические ожидания каждой из данных величин:

Случайные величины X и Y независимые, поэтому искомое математическое ожидание:

M(XY) = M(X)M(Y)=

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

М (X + Y) = М (X) + М (Y).

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пример 4.9. Производится 3 выстрела с вероятностями попадания в цель, равными р 1 = 0,4; p 2 = 0,3 и р 3 = 0,6. Найти математическое ожидание общего числа попаданий.

Решение.

Число попаданий при первом выстреле есть случайная величина Х 1 , которая может принимать только два значения: 1 (попадание) с вероятностью р 1 = 0,4 и 0 (промах) с вероятностью q 1 = 1 – 0,4 = 0,6.

Математическое ожидание числа попаданий при первом выстреле равно вероятности попадания:

Аналогично найдем математические ожидания числа попаданий при втором и третьем выстрелах:

М(Х 2) = 0,3 и М(Х 3)= 0,6.

Общее число попаданий есть также случайная величина, состоящая из суммы попаданий в каждом из трех выстрелов:

Х = Х 1 + Х 2 + Х 3 .

Искомое математическое ожидание Х находим по теореме о математическом, ожидании суммы:

М(X) = M(X l + X 2 + X 3) = M(X 1) + M(X 2) + M (X 3) = 0,4 + 0,3 + 0,6 = 1,3 (попаданий).

Величин.

Основные числовые характеристики случайных

Закон распределения плотностью характеризует случайную величину. Но часто он неизвестен, и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. Рассмотрим основные из них.

Определение: Математическим ожиданием М(Х) дискретной случайной величины называют сумму произведений всех возможных значений этой величины на их вероятности:

Если дискретная случайная величина Х принимает счётное множество возможных значений, то

Причем математическое ожидание существует, если данный ряд абсолютно сходится.

Из определения следует, что M(X) дискретной случайной величины есть неслучайная (постоянная) величина.

Пример: Пусть Х – число появлений события А в одном испытании, P(A) = p . Требуется найти математическое ожидание Х .

Решение: Составим табличный закон распределения Х :

X 0 1
P 1 - p p

Найдем математическое ожидание:

Таким образом, математическое ожидание числа появлений события в одном испытании равно вероятности этого события .

Происхождение термина математическое ожидание связано с начальным периодом возникновения теории вероятностей (XVI-XVIIвв.), когда область ее применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша, т.е. математическое ожидание выигрыша.

Рассмотрим вероятностный смысл математического ожидания .

Пусть произведено n испытаний, в которых случайная величина Х приняла m 1 раз значение x 1 , m 2 раз значение x 2 , и так далее, и, наконец, она приняла m k раз значение x k , причём m 1 + m 2 +…+ + m k = n .

Тогда сумма всех значений, принятых случайной величиной Х , равна x 1 m 1 +x 2 m 2 +…+x k m k .

Среднее арифметическое всех значений, принятых случайной величиной Х ,равно:

так как – относительная частота значения для любого значения i = 1, …, k.

Как известно, если число испытаний n достаточно велико, то относительная частота приближённо равна вероятности появления события , следовательно,

Таким образом, .

Вывод: Математическое ожидание дискретной случайной величины приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Рассмотрим основные свойства математического ожидания.

Свойство 1: Математическое ожидание постоянной величины равно самой постоянной величине:

М(С) = С.

Доказательство: Постоянную С можно рассматривать , которая имеет одно возможное значение С и принимает его с вероятностью р = 1. Следовательно, М(С) =С 1= С.



Определим произведение постоянной величины С на дискретную случайную величину Х как дискретную случайную величину СХ , возможные значения которой равны произведениям постоянной С на возможные значения Х СХ равны вероятностям соответствующих возможных значений Х :

СХ C C C
Х
Р

Свойство 2: Постоянный множитель можно выносить за знак математического ожидания:

M(CX) = CM(X).

Доказательство: Пусть случайная величина X задана законом распределения вероятностей:

X
P

Напишем закон распределения вероятностей случайной величины CX :

СX C C C
P

М(CX) = C + C = C + ) = C M(X).

Определение: Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы.

Определение: Несколько случайных величин называются взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Определим произведение независимых дискретных случайных величин X и Y как дискретную случайную величину XY , возможные значения которой равны произведениям каждого возможного значения X на каждое возможное значение Y . Вероятности возможных значений XY равны произведениям вероятностей возможных значений сомножителей.

Пусть даны распределения случайных величин X и Y:

X
P
Y
G

Тогда распределение случайной величины XY имеет вид:

XY
P

Некоторые произведения могут оказаться равными. В этом случае вероятность возможного значения произведения равна сумме соответствующих вероятностей. Например, если = , тогда вероятность значения равна

Свойство 3: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X) M(Y).

Доказательство: Пусть независимые случайные величины X и Y заданы своими законами распределения вероятностей:

X
P
Y
G

Для упрощения выкладок ограничимся малым числом возможных значений. В общем случае доказательство аналогичное.

Составим закон распределения случайной величины XY :

XY
P

M(XY) =

M(X) M(Y).

Следствие: Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Доказательство: Докажем для трех взаимно независимых случайных величин X , Y , Z . Случайные величины XY и Z независимы, тогда получаем:

M(XYZ) = M(XY Z) = M(XY) M(Z) = M(X) M(Y) M(Z).

Для произвольного числа взаимно независимых случайных величин доказательство проводится методом математической индукции.

Пример: Независимые случайные величины X и Y

X 5 2
P 0,6 0,1 0,3
Y 7 9
G 0,8 0,2

Требуется найти M(XY) .

Решение: Так как случайные величины X и Y независимы, то M(XY)=M(X) M(Y)=(5 0,6+2 0,1+4 0,3) (7 0,8+9 0,2)= 4,4 7,4 = =32,56.

Определим сумму дискретных случайных величин X и Y как дискретную случайную величину X+Y , возможные значения которой равны суммам каждого возможного значения X с каждым возможным значением Y . Вероятности возможных значений X+Y для независимых случайных величин X и Y равны произведениям вероятностей слагаемых, а для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго.

Если = и вероятности этих значений соответственно равны , то вероятность (то же, что и ) равна .

Свойство 4: Математическое ожидание суммы двух случайных величин (зависимых или независимых) равно сумме математических ожиданий слагаемых:

M(X+Y) = M(X) + M(Y).

Доказательство: Пусть две случайные величины X и Y заданы следующими законами распределения:

X
P
Y
G

Для упрощения вывода ограничимся двумя возможными значениями каждой из величин. В общем случае доказательство аналогичное.

Составим все возможные значения случайной величины X+Y (предположим, для простоты, что эти значения различны; если – нет, то доказательство проводится аналогично):

X+Y
P

Найдем математическое ожидание этой величины.

M (X+Y ) = + + + +

Докажем, что + = .

Событие X = (его вероятность P(X = ) влечет за собой событие, состоящее в том, что случайная величина X + Y примет значение или (вероятность этого события, по теореме сложения, равна ) и обратно. Тогда = .

Аналогично доказываются равенства = = =

Подставляя правые части этих равенств в полученную формулу для математического ожидания, получим:

M(X + Y) = + ) = M(X) + M(Y).

Следствие: Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Доказательство: Докажем для трех случайных величин X , Y , Z . Найдем математическое ожидание случайных величин X +Y и Z :

M(X+Y+Z)=M((X+Y Z)=M(X+Y) M(Z)=M(X)+M(Y)+M(Z)

Для произвольного числа случайных величин доказательство проводится методом математической индукции.

Пример: Найти среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение: Пусть X – число очков, которое может выпасть на первой кости, Y – на второй. Очевидно, что случайные величины X и Y имеют одинаковые распределения. Запишем данные распределений X и Y в одну таблицу:

X 1 2 3 4 5 6
Y 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6

M(X) = M(Y) (1+2+3+4+5+6) = =

M(X + Y) = 7.

Итак, среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей равно 7 .

Теорема: Математическое ожидание M(X) числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: M(X) = np.

Доказательство: Пусть X – число наступлений события A в n независимых испытаниях. Очевидно, общее число X появлений события A в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Тогда, если число появлений события в первом испытании, во втором, и так далее, наконец, – число появлений события в n -ом исытании, то общее число появлений события вычисляется по формуле:

По свойству 4 математического ожидания имеем:

M(X) = M( ) + … + M( ).

Так как математическое ожидание числа появлений события в одном испытании равно вероятности события, то

M( ) = M( )= … = M( ) = p.

Следовательно, M(X) = np.

Пример: Вероятность попадания в цель при стрельбе из орудия равна p = 0,6 . Найти среднее число попаданий, если будет произведено 10 выстрелов.

Решение: Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и, следовательно, искомое математическое ожидание равно:

M(X) = np = 10 0,6 = 6.

Итак, среднее число попаданий равно 6.

Теперь рассмотрим математическое ожидание непрерывной случайной величины.

Определение: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку , называют определенный интеграл:

где f(x) – плотность распределения вероятностей.

Если возможные значения непрерывной случайной величины X принадлежат всей оси Ox, то

Предполагается, что данный несобственный интеграл сходится абсолютно, т.е. сходится интеграл Если бы это требование не выполнялось, то значение интеграла зависело бы от скорости стремления (в отдельности) нижнего предела к -∞, а верхнего предела – к +∞.

Можно доказать, что все свойства математического ожидания дискретной случайной величины сохраняются и для непрерывной случайной величины . Доказательство основано на свойствах определенных и несобственных интегралов.

Очевидно, чтоматематическое ожидание M(X) больше наименьшего и меньше наибольшего из возможных значений случайной величины X . Т.е. на числовой оси возможные значения случайной величины расположены слева и справа от ее математического ожидания. В этом смысле, математическое ожидание M(X) характеризует расположение распределения, и поэтому его часто называют центром распределения .

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина может принимать только значения вероятности которых соответственно равны Тогда математическое ожидание случайной величины определяется равенством

Если дискретная случайная величина принимает счетное множество возможных значений, то

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание. Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина.

Определение математического ожидания в общем случае

Определим математическое ожидание случайной величины, распределение которой не обязательно дискретно. Начнем со случая неотрицательных случайных величин. Идея будет заключаться в том, чтобы аппроксимировать такие случайные величины с помощью дискретных, для которых математическое ожидание уже определено, а математическое ожидание положить равным пределу математических ожиданий приближающих ее дискретных случайных величин. Кстати, это очень полезная общая идея, состоящая в том, что некоторая характеристика сначала определяется для простых объектов, а затем для более сложных объектов она определяется с помощью аппроксимации их более простыми.

Лемма 1. Пусть есть произвольная неотрицательная случайная величина. Тогда существует последовательность дискретных случайных величин, таких, что


Доказательство. Разобьем полуось на равные отрезки длины и определим

Тогда свойства 1 и 2 легко следуют из определения случайной величины, и

Лемма 2. Пусть -неотрицательная случайная величина и и две последовательности дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Тогда

Доказательство. Отметим, что для неотрицательных случайных величин мы допускаем

В силу свойства 3 легко видеть, что существует последовательность положительных чисел, такая что

Отсюда следует, что

Используя свойства математических ожиданий для дискретных случайных величин, получаем

Переходя к пределу при получаем утверждение леммы 2.

Определение 1. Пусть - неотрицательная случайная величина, -последовательность дискретных случайных величин, обладающих свойствами 1-3 из леммы 1. Математическим ожиданием случайной величины называется число

Лемма 2 гарантирует, что не зависит от выбора аппроксимирующей последовательности.

Пусть теперь - произвольная случайная величина. Определим

Из определения и легко следует, что

Определение 2. Математическим ожиданием произвольной случайной величины называется число

Если хотя бы одно из чисел в правой части этого равенства конечно.

Свойства математического ожидания

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной:

Доказательство. Будем рассматривать постоянную как дискретную случайную величину, которая имеет одно возможное значение и принимает его с вероятностью следовательно,

Замечание 1. Определим произведение постоянной величины на дискретную случайную величину как дискретную случайную возможные значения которой равны произведениям постоянной на возможные значения; вероятности возможных значений равны вероятностям соответствующих возможных значений Например, если вероятность возможного значения равна то вероятность того, что величина примет значение также равна

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Доказательство. Пусть случайная величина задана законом распределения вероятностей:

Учитывая замечание 1, напишем закон распределения случайной величины

Замечание 2. Прежде, чем перейти к следующему свойству, укажем, что две случайные величины называют независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы. Несколько случайных величин называют взаимно независимыми, если законы распределения любого числа их них не зависят от того, какие возможные значения приняли остальные величины.

Замечание 3. Определим произведение независимых случайных величин и как случайную величину возможные значения которой равны произведениям каждого возможного значения на каждое возможное значение вероятности возможных значений произведения равны произведениям вероятностей возможных значений сомножителей. Например, если вероятность возможного значения равна, вероятность возможного значения равна то вероятность возможного значения равна

Свойство 3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

Доказательство. Пусть независимые случайные величины и заданы своими законами распределения вероятностей:

Составим все значения, которые может принимать случайная величина Для этого перемножим все возможные значения на каждое возможное значение; в итоге получим и учитывая замечание 3, напишем закон распределения предполагая для простоты, что все возможные значения произведения различны (если это не так, то доказательство проводится аналогично):

Математическое ожидание равно сумме произведений всех возможных значений на их вероятности:

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Свойство 4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

Доказательство. Пусть случайные величины и заданы следующими законами распределения:

Составим все возможные значения величины Для этого к каждому возможному значению прибавим каждое возможное значение; получим Предположим для простоты, что эти возможные значения различны (если это не так, то доказательство проводится аналогично), и обозначим их вероятности соответственно через и

Математическое ожидание величины равно сумме произведений возможных значений на их вероятности:

Докажем, что Событие, состоящее в том, что примет значение (вероятность этого события равна), влечет за собой событие, которое состоит в том, что примет значение или (вероятность этого события по теореме сложения равна), и обратно. Отсюда и следует, что Аналогично доказываются равенства

Подставляя правые части этих равенств в соотношение (*), получим

или окончательно

Дисперсия и среднее квадратическое отклонение

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т.е. для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие - отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, т.е. вычисляют среднее значение квадрата отклонения, которое и называется дисперсией.

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Определение 1. Математическое ожидание - это число, характеризующее центр распределения.

Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений случайной величины на соответствующие вероятности, т.е.

Если число значений случайной величины конечно.

Если число значений случайной величины бесконечно, то М(х) существует, если сходится данный ряд.

Для непрерывной случайной величины математическое ожидание вычисляется через определенный интеграл от случайной величины х , умноженной на элемент вероятности dP = f(x)dx , т.е.

если значения случайной величины сосредоточены в [а; b].

если значения случайной величины занимают всю числовую ось. В этом случае M(x) существует, если сходится несобственный интеграл.

Математическое ожидание называют также средним значением случайной величины. Оно имеет те же самые единицы измерения, что и случайная величина.

Определение 2. Дисперсия - это число, характеризующее отклонение случайной величины от центра распределения в квадратных единицах измерения случайной величины.

Дисперсия для любой случайной величины определяется как математическое ожидание квадрата отклонения случайной величины от математического ожидания, т.е.

D(x) = М (х – М (х)) 2

Эта формула имеет вид:

Т.к. если случайная величина дискретная.

Если случайная величина непрерывная, то

Дисперсию можно также вычислить как разность математического ожидания квадрата случайной величины и квадрата математического ожидания случайной величины, т.е. по следующей формуле:

D(x) = М (х 2) – М 2 (х),

где , если случайная величина дискретная.

Если непрерывная.

Определение 3. Средним квадратическим отклонением называется число равное арифметическому значению корня квадратного из дисперсии.

Среднее квадратическое отклонение имеет те же самые единицы измерения, что и случайная величина.

Пример №1. Найти М(х), D(x), σ(x) , дискретной случайной величины, если


х i
p i 0.3 0.1 0.3 0.2 0.1

Решение.


Найдем дисперсию:

D(x)=(0-2,7) 2 0,3+(1-2,7) 2 0,1+(3-2,7) 2 0,3+(5-2,7) 2 0,2+(7-2,7) 2 0,1=5,41

или D(x)=M(x 2)-M 2 (x);

D(x) = 12,7-(2,7) 2 = 5,41

Пример №2. Найти M(х), D(x), σ(x) непрерывной случайной величины, если

0; если х<0

f(x)=
; если 0≤x<3

0; если х≥3


Решение. Найдем математическое ожидание:


Найдем дисперсию по формуле:

Найдем дисперсию по формуле: D(x) = М(х 2) - М 2 (х)




D(x)= 4,5-(2) 2 =4,5-4 = 0,5

Найдем среднее квадратическое отклонение:

Замечание. Числовые характеристики M(x) и D(x) имеют следующие свойства:


2 М(к х) = кМ(х)

3 М(х ± у) = М(х) ± М(у)
4. М(х ± с) = М(х) ± с

5 М(ху) = М(х)М(у), если х и у - независимые случайные величины


2. D(kx) = k 2 D(x)

3. D(x ± у) = D(x) ± D(y),если х и у - независимые случайные величины.