Меню Рубрики

Космические среды гравитационное поле луны. Сравнение солнца и луны

В данной главе мы рассмотрим, как Луна воздействует своим гравитационным полем собственно на саму Землю, т.е. на ее тело и ее движение по орбите. Последствия данного воздействия для различных земных сфер - литосферы, гидросферы, ядра, атмосферы, магнитосферы и др., а также для биосферы будут рассмотрены в следующих главах.

ВНИМАНИЕ!
Графики гравитационного взаимодействия Луны и Земли см. с помощью сервиса
ЛУННЫЙ ФАКТОР

Расчетные соотношения и константы

Для расчета гравитационного воздействия Луны воспользуемся формулой классической физики, определяющей силу F взаимного притяжения двух тел с массами M1 и M2, центры масс которых находятся друг от друга на расстоянии R:

(1) F (н) = (G x M1 x M2) / R 2 ,

где G = 6,67384 х 10 -11 - гравитационная постоянная.

Данная формула дает значение силы притяжения в единицах системы СИ - ньютонах (н). Для целей нашего трактата удобнее и понятнее будет оперировать килограммами силы (кгс), которые получаются делением F на коэффициент 9,81, т.е.:

(2) F (кгс) = (G x M1 x M2) / (9,81 х R 2)

Для дальнейших расчетов нам потребуются следующие константы:

  1. масса Луны - 7,35 х 10 22 кг;
  2. среднее расстояние от Земли до Луны - 384400 км;
  3. средний радиус Земли - 6371 км;
  4. масса Солнца - 1,99 х 10 30 кг;
  5. среднее расстояние от Земли до Солнца - 149,6 млн. км;

Сила лунного притяжения на Земле

В соответствии с формулой (2), сила притяжения Луной тела массой 1 кг, находящегося в центре Земли, при расстоянии между Луной и Землей, равном его среднему значению, равна:

(3) F = (6,67 х 10 -11 х 7,35 х 10 22 х 1) / (9,81 х 384400000 2) = 0, 000003382 кгс

т.е. всего 3,382 микрограмма. Для сравнения расчитаем силу притяжения того же тела Солнцем (также для среднего расстояния):

(4) F = (6,67 х 10 -11 х 1,99 х 10 30 х 1) / (9,81 х 149600000000 2) = 0, 000604570 кгс,

т.е. 604,570 микрограмм, что почти в 200 (двести!) раз больше, чем сила притяжения Луной.

Кроме того, вес тела, находящегося на поверхности Земли, изменяется в гораздо более существенных пределах из-за отклонения формы Земли от идеальной, неравномерности рельефа и плотности, а также влияния центробежных сил. Так, например, вес тела массой в 1 кг на полюсах больше веса на экваторе примерно на 5,3 грамма, причем одна треть этой разницы обусловлена сплюснутостью Земли с полюсов, а две трети - центробежной силой на экваторе, направленной против силы тяжести.

Как видно, прямое гравитационное воздействие Луны на конкретное тело, находящееся на Земле, является в прямом смысле микроскопическим и при этом существенно уступает гравитационному воздействию Солнца и геофизических аномалий.

Градиент силы лунного притяжения

Обратимся к рис.3.1. Для среднего значения расстояния Земля - Луна сила притяжения Луной тела массой 1 кг, расположенного на поверхности Земли в ближайшей к Луне точке составляет 3,495 микрограмм, что на 0,113 микрограмм больше, чем сила притяжения того же тела, но расположенного в центре Земли. Сила же притяжения тела, находящегося на поверхности Земли, Солнцем (также для среднего значения расстояния) составит 604,622 микрограмма, что больше силы притяжения того же тела, но расположенного в центре Земли, на 0,052 микрограмма.

Рис.3.1 Лунная и солнечная гравитация

Т.о, несмотря на неизмеримо меньшую массу Луны по сравнению с Солнцем, градиент силы ее тяготения на орбите Земли в среднем в два с лишним раза больше градиента силы тяготения Солнца.

Для иллюстрации воздействия гравитационного поля Луны на тело Земли обратимся к рис. 3.2.

Рис.3.2 Влияние гравитационного поля Луны на тело Земли.

Данный рисунок представляет весьма и весьма упрощенную картину реакции тела Земли на воздействие лунной гравитации, но достоверно отражает суть процесса - изменение формы земного шара под воздействием т.н. приливных (или приливообразующих) сил, направленных вдоль оси Земля - Луна, и противодействующих им сил упругости тела Земли. Приливные силы возникают из-за того, что точки Земли, расположенные ближе к Луне, притягиваются к ней сильнее, чем точки, расположенные дальше от нее. Иными словами, деформация тела Земли является следствием градиента силы притяжения Луны и противодействующих ему сил упругости тела Земли. В результате действия этих сил размер Земли увеличивается в направлении действия приливных сил и уменьшается в поперечном направлении, вследствие чего на поверхности образуется волна, именуемая приливной. Эта волна имеет два максимума, находящиеся на оси Земля - Луна и перемещающиеся по поверхности Земли в направлении, противоположном направлению ее вращения. Амплитуда волны зависит от широты местности и текущих параметров орбиты Луны и может достигать нескольких десятков сантиметров. Максимальное значение она будет иметь на экваторе при прохождении Луной ее перигея.

Солнце также вызывает приливную волну в теле Земли, но существенно меньшую из-за меньшего градиента силы его тяготения. Совместное гравитационное воздействие Луны и Солнца на тело Земли зависит от их взаимного расположения. Максимально значение приливных сил и, соответственно, максимальная амплитуда приливной волны достигается при расположении всех трех объектов на одной оси, т.е. в состоянии т.н. сизигии (выравнивания), что имеет место при новолунии (Луна и Солнце в «соединении») или при полнолунии (Луна и Солнце в «оппозиции»). Данные конфигурации иллюстрируются рис. 3.3 и 3.4.

Рис.3.3 Совместное влияние гравитационных полей Луны и Солнца на тело Земли
в «соединении» (в новолуние).

Рис.3.4 Совместное влияние гравитационных полей Луны и Солнца на тело Земли
в «оппозиции» (в полнолуние).

По мере отклонения Луны и Солнца от линии сизигии вызываемые ими приливные силы и, соответственно, приливные волны начинают приобретать самостоятельный характер, их сумма уменьшается, а степень их противодействия друг другу растет. Противодействие достигает максимума, когда угол между направлениями на Луну и Солнце из центра Земли равен 90°, т.е. данные тела находятся в «квадрате», а Луна, соответственно, находится в фазе четверти (первой или последней). В этой конфигурации приливные силы Луны и Солнца действуют на форму тела Земли строго противоположно, соответствующие приливные волны на поверхности максимально разнесены, а их амплитуда минимальна, что иллюстрируется рис. 3.5.

Рис.3.5 Совместное влияние гравитационных полей Луны и Солнца на тело Земли в «квадрате».

Физика земных приливных процессов под воздействием гравитационных полей Луны и Солнца весьма сложна и требует учета большого числа параметров. На эту тему было разработано большое число различных теорий, проведено много экспериментальных исследований, написано огромное количество статей, монографий и диссертаций. Даже на сегодняшней день в этой области остается много «белых» пятен, противоречащих друг другу точек зрения и альтернативных подходов. Для желающих углубиться в проблематику земных приливов можно рекомендовать фундаментальное исследование П. Мельхиора «Земные приливы» (пер. с англ., М., «Мир», 1968 г. 483 страницы).

Следствием воздействия лунной гравитации на Землю являются два фундаментальных явления:

  1. Лунные приливы на поверхности Земли - периодических изменений уровня земной поверхности, синхронизированные с суточным вращением Земли и перемещением Луны по орбите.
  2. Наложение на земную орбиту переменной составляющей, синхронизированной с вращением системы Земля - Луна вокруг общего центра масс.

Данные явления являются главными механизмами воздействия Луны на земные сферы - литосферу, гидросферу, земное ядро, атмосферу, магнитосферу и др. Более подробно об этом - в следующей главе.

Масса Земли равна 6-10 2 4 кг, ее средняя плотность 5,52 г/см 3 . Масса Земли обусловливает определенное напряжение гравитационного поля, которое влияет на жизнь Земли как планеты и на ее географическую оболочку. Гравитационное поле Земли является главной причиной, определяющей ее фигуру, строение, наличие и толщину земной атмосферы, высоту гор и глубину впадин, скорость движения воды, воздуха, перемещения рыхлых горных пород, характер залегания полезных ископаемых, развитие органической жизни и т. д. влияет также на величину первой и второй космической скоростей, на форму орбит искусственных ов Земли, на величину приливов и отливов. Для жизни Земли большое значение имеет взаимодействие гравитационного поля Земли с гравитационными полями Луны, а, планет и Галактики в целом. Такие взаимодействия не ограничиваются только движениями Земли в мировом пространстве, но имеют более глубокие не вполне еще ясные влияния на геологическую историю и географические процессы.

Напряженность гравитационного поля измеряется ускорением силы тяжести, которая является равнодействующей между силой притяжения Земли и центробежной силой вращения Земли вокруг оси. Среднее ускорение силы тяжести на уровне моря равно 981 см/сек 2 . В связи с вращением Земли и ее сфероидальностью ускорение силы тяжести уменьшается от а к у. На е оно равно на е 978 см/сек 2 . На основании закона всемирного тяготения сила тяжести с высотой (с удалением от центра тяготения) уменьшается. С глубиной она сначала увеличивается до 1037 см/сек 2 у границы ядра, а затем уменьшается до нуля в центре Земли.

Ввиду того, что верхние слои Земли сложены породами, имеющими разную плотность, распределение силы тяжести по земной поверхности отклоняется от теоретически вычисленных значений. Над участками, сложенными более плотными породами, ее значение увеличивается, а над менее плотными породами уменьшается по сравнению со значением для однородного строения Земли. Отклонения силы тяжести от теоретических значений - аномалии силы тяжести - выявляются при гравиметрической съемке. Сущность гравиметрической съемки состоит в том, что определяют значение ускорения силы тяжести в избранных точках земной поверхности приборами гравиметрами, действующими по принципу пружинных весов.

Кроме частных аномалий силы тяжести, наблюдающихся в ограниченных районах, существуют аномалии, отражающие различное строение и мощность земной коры. Эти аномалии связаны с принципом равновесия, или изостазией. В распределении масс земной коры существует равновесие, при котором избытку массы у поверхности соответствует ее недостаток на глубине и наоборот. Перемещение масс с суши на океан, с гор на низменности в результате процесса разрушения пород должно вызывать поднятие облегченных участков коры и прогиб участков, получивших добавочную нагрузку. Это, вероятно, приводило к обратному движению вещества под корой. Так как такое компенсационное подкорковое течение запаздывает, то поэтому океаны имеют, как правило, положительные аномалии силы тяжести, материки - отрицательные. Быстрые поднятия и опускания участков земной коры, вызванные так называемыми тектоническими причинами, нарушают изостазию и также приводят к аномалии силы тяжести.

Гравитационное поле Земли является первопричиной круговорота вещества в литосфере, атмосфере и гидросфере.

Глобальные изменения силы тяжести (область проявления более 10 4 км) мо­

гут быть вызваны смещениями эксцентричного земного ядра относительно ман­

тии , перемещениями масс в мантии (конвекция в мантии) и литосфере (дви­

жение тектонических плит), а также повышением уровня Мирового океана. Реги­

ональные изменения (10 2 - 10 4 км) происходят одновременно с послеледнико­

выми процессами изостатической компенсации, тектоническими процессами (го­

рообразование) и накоплением осадочных пород. Глобальные и региональные из­

менения носят вековой или очень длительный характер на интервалах 10 3 - 10 8

лет; вместе с тем нельзя исключить долгопериодические компоненты. Локальные

изменения (10° - 10 2 км) связаны в основном с сейсмотектоническими процесса­

ми, а также с явлениями до и после землетрясений, с вулканическими процесса­

ми, с движениями в зонах разломов земной коры и грабенов. Землетрясения и

вулканическая активность влекут резкие мгновенные и короткопериодические из­

менения силы тяжести, для асейсмических движений характерны временные ин­

тервалы 10° - 10 2 лет. Изменения уровня грунтовых вод и другие гидрологиче­

ские цроцессы, как и вариации атмосферного давления, приводят к нерегулярным

периодическим изменениям силы тяжести в течение 10- 2 - 10° лет. И наконец,

отметим смещения масс и связанные с ними изменения силы тяжести в результа­

те человеческой деятельности (откачка воды, нефти, газа, горные разработки, со­

здание крупных инженерных сооружений) в течение 10° - 10 2 лет.

3.5. Гравитационные поля Луны и планет

Крупномасштабные структуры внешних гравитационных полей Луны и ближай­ ших к Земле планет были изучены на основе анализа орбит далеких космических

аппаратов, а также спутников Луны и планет. Для внешних планет Солнечной

системы эти данные были дополнены наземными астрономическими наблюдени­

ями (оптическими и радиотехническими методами). Измерения силы тяжести бы­

ли выполнены и на самой поверхности Луны. Современное состояние исследова­

ний гравитационных полей Луны и планет описано в работе , гравитацион­ ные поля Луны и планет земной группы рассмотрены в , а также в работе . Обширная монография о гравитационном поле Луны написана Сагитовым и др. . В рамках будущих исследовательских программ обсуждается примене­

ние орбитальных гравитационных градиентометров (разд. 8.3.3).

3.5.1. Гравитационное поле Луны

получим для модели Луны, состоящей из сферических слоев (средний радиус

1737,53 км), среднюю величину силы тяжести на поверхности:

Таблица 3.6. Нормированные гармони­ ческие коэффициенты (округленные зна­

чении) поля силы тяжести Луны }