Меню Рубрики

Константы химического равновесия и связь между ними. Условие равновесия

K p = ∏ p i ν i {\displaystyle K_{p}=\prod p_{i}^{{\nu }_{i}}}

Например, для реакции окисления монооксида углерода :

2CO + O 2 = 2CO 2

константа равновесия может быть рассчитана по уравнению:

K p = p C O 2 2 p C O 2 ⋅ p O 2 {\displaystyle K_{p}={\frac {p_{CO_{2}}^{2}}{p_{CO}^{2}\cdot p_{O_{2}}}}} K p = K x P Δ n {\displaystyle K_{p}=K_{x}P^{\Delta n}}

где Δn - изменение числа молей веществ в ходе реакции. Видно, что K x зависит от давления. Если число молей продуктов реакции равно числу молей исходных веществ ( Δ n = 0 {\displaystyle \Delta n=0} ), то K p = K x {\displaystyle K_{p}=K_{x}} .

Стандартная константа равновесия

Стандартная константа равновесия реакции в смеси идеальных газов (когда начальные парциальные давления участников реакции равны их значениям в стандартном состоянии = 0,1013 МПа или 1 атм) может быть рассчитана по выражению:

K 0 = ∏ (p i ~) v i {\displaystyle K^{0}=\prod ({\tilde {p_{i}}})^{v_{i}}} где p i ~ {\displaystyle {\tilde {p_{i}}}} - относительные парциальные давления компонентов, p i ~ = p i / p i 0 {\displaystyle {\tilde {p_{i}}}=p_{i}/p_{i}^{0}} .

Стандартная константа равновесия - безразмерная величина. Она связана с K p соотношением:

K p = K 0 (p i 0) Δ n {\displaystyle K_{p}=K^{0}(p_{i}^{0})^{\Delta n}}

Видно, что если p i 0 {\displaystyle p_{i}^{0}} выражены в атмосферах, то (p i 0) Δ n = 1 {\displaystyle (p_{i}^{0})^{\Delta n}=1} и K p = K 0 {\displaystyle K_{p}=K^{0}} .

Для реакции в смеси реальных газов в стандартном начальном состоянии парциальные фугитивности газов принимаются равными их парциальным давлениям f i 0 = p i 0 {\displaystyle f_{i}^{0}=p_{i}^{0}} = 0,1013 МПа или 1 атм. K f связана с K 0 соотношением:

K f = K 0 (γ i p i 0) Δ n {\displaystyle K_{f}=K^{0}(\gamma _{i}p_{i}^{0})^{\Delta n}} где γ i - коэффициент фугитивности i-го реального газа в смеси.

Константа равновесия реакций в гетерогенных системах

FeO т + CO г = Fe т + CO 2г

константа равновесия (при условии, что газовая фаза идеальна) имеет вид:

K p = p C O 2 p C O {\displaystyle K_{p}={\frac {p_{CO_{2}}}{p_{CO}}}}

Термодинамическое описание равновесия

Наряду с обозначением Q для соотношения активностей веществ в произвольный момент реакции t ("коэффициент реакции ")

Q r = { S t } σ { T t } τ { A t } α { B t } β = ∏ a j (t) ν j ∏ a i (t) ν i = ∏ a n (t) ν n {\displaystyle Q_{r}={\frac {\left\{S_{t}\right\}^{\sigma }\left\{T_{t}\right\}^{\tau }}{\left\{A_{t}\right\}^{\alpha }\left\{B_{t}\right\}^{\beta }}}={\frac {\prod a_{j(t)}^{\nu _{j}}}{\prod a_{i(t)}^{\nu _{i}}}}=\prod a_{n(t)}^{\nu _{n}}} (обозначения для приведённой ниже реакции; последнее равенство написано в обозначении, что стехиометрические коэффициент берутся со знаком "+" для продуктов и со знаком "-" для исходных веществ)

в химической термодинамике используется обозначение K eq для такого же по форме соотношения между равновесными активностями веществ

K e q = [ S ] σ [ T ] τ [ A ] α [ B ] β = ∏ a j (t = ∞) ν j ∏ a i (t = ∞) ν i = ∏ a n (t = ∞) ν n {\displaystyle K_{eq}={\frac {[S]^{\sigma }[T]^{\tau }}{[A]^{\alpha }[B]^{\beta }}}={\frac {\prod a_{j(t=\infty)}^{\nu _{j}}}{\prod a_{i(t=\infty)}^{\nu _{i}}}}=\prod a_{n(t=\infty)}^{\nu _{n}}} (то есть соотношения активностей в момент t = ∞ {\displaystyle t=\infty } , в момент равновесия). Далее приведено термодинамическое описание химического равновесия и описана связь K eq со стандартной энергией Гиббса процесса.

В системе, где протекает химическая реакция

α A + β B ⇌ σ S + τ T {\displaystyle \alpha A+\beta B\rightleftharpoons \sigma S+\tau T}

равновесие может быть описано условием

(d G d ξ) T , p = 0 {\displaystyle \left({\frac {dG}{d\xi }}\right)_{T,p}=0} где ξ {\displaystyle \xi } есть химическая переменная

или, то же самое условие равновесия может быть записано с использованием химических потенциалов как

α μ A + β μ B = σ μ S + τ μ T {\displaystyle \alpha \mu _{A}+\beta \mu _{B}=\sigma \mu _{S}+\tau \mu _{T}}

где химические потенциалы

μ A = μ A ⊖ + R T ln ⁡ { A } {\displaystyle \mu _{A}=\mu _{A}^{\ominus }+RT\ln\{A\}} здесь {A} - строго говоря, активность реагента A; при допущениях об идеальных газах можно заменить их на давления, для реальных газов можно заменить на фугитивности, при допущении о том, что раствор подчиняется закону Генри , можно заменить на мольные доли , и при допущении, что раствор подчиняется закону Рауля - на парциальные давления ; для системы в равновесии может быть заменена на равновесную молярную концентрацию или на равновесную активность. Δ r G o = − R T ln ⁡ K e q {\displaystyle \Delta _{r}G^{o}=-RT\ln K_{eq}}

Равновесный состав смеси и направление реакции

Упомянутый выше "коэффициент реакции" Q (другие обозначения, встречающиеся в литературе - Ω {\displaystyle \Omega } или π {\displaystyle \pi } , "произведение реакции")

Q r = ∏ a n (t) ν n {\displaystyle Q_{r}=\prod a_{n(t)}^{\nu _{n}}}

отражает соотношение текущих активностей всех участников реакции и может быть использован для определения направления реакции в момент, для которого известен Q

Если в момент t коэффициент Q > K, то текущие активности продуктов больше равновесных, и значит они должны уменьшиться к тому моменту, когда установится равновесие, то есть в данный момент протекает обратная реакция; Если Q = K, то равновесное состояние достигнуто и скорости прямой и обратной реакций равны; Если Q < K, то v 1 > v − 1 {\displaystyle v_{1}>v_{-1}}

С использованием величины Q r {\displaystyle Q_{r}} записывается уравнение изотермы химической реакции

Δ G p , T = R T ln ⁡ Q r − R T ln ⁡ K e q = R T ln ⁡ Q r K e q = ∑ ν i μ i {\displaystyle \Delta G_{p,T}=RT\ln Q_{r}-RT\ln K_{eq}=RT\ln {\frac {Q_{r}}{K_{eq}}}=\sum \nu _{i}\mu _{i}}

Где ν {\displaystyle \nu } - стехиометрические коэффициенты (для продуктов - со знаком "+", для исходных веществ - со знаком "-"; так же, как и в выражениях для Q и K), а μ {\displaystyle \mu } - химические потенциалы а стандартная энергия Гиббса и стандартная константа суть

Δ G p , T o = − R T ln ⁡ K e q o = ∑ ν i μ i o {\displaystyle \Delta G_{p,T}^{o}=-RT\ln K_{eq}^{o}=\sum \nu _{i}\mu _{i}^{o}}

Где μ o {\displaystyle \mu ^{o}} - стандартные химические потенциалы

Уравнение изотермы показывает, как величина Q связана с изменением свободной энергии реакции:

При Q > K {\displaystyle Q>K} для прямой реакции Δ G > 0 {\displaystyle \Delta G>0} , то есть ∑ ν j μ j {\displaystyle \sum \nu _{j}\mu _{j}} для продуктов прямой реакции больше, чем для исходных веществ - это означает, что прямая реакция запрещена (значит, не запрещена обратная); при Q = K {\displaystyle Q=K} для прямой реакции Δ G = 0 {\displaystyle \Delta G=0} , то есть реакция достигла равновесного состояния; при Q < K {\displaystyle Q для прямой реакции Δ G < 0 {\displaystyle \Delta G<0} , то есть эта самопроизвольное протекание этой реакции разрешено

Величина по определению имеет смысл только для состояния равновесия, то есть для состояния с v 1 v − 1 = 1 {\displaystyle {\frac {v_{1}}{v_{-1}}}=1} и Δ G r = 0 {\displaystyle \Delta G_{r}=0} . Величина K e q {\displaystyle K_{eq}} ничего не говорит о скоростях реакций, но она описывает состав системы в состоянии равновесия.

Если K >> 1, то в системе преобладают продукты (прямой) реакции Если K << 1, то в системе преобладают исходные вещества (продукты обратной реакции)

Стандартные состояния

Стандартная энергия Гиббса реакции в газовой смеси - энергия Гиббса реакции при стандартных парциальных давлениях всех компонентов, равных 0,1013 МПа (1 атм). Стандартная энергия Гиббса реакции в растворе - энергия Гиббса при стандартном состоянии раствора, за которое принимают гипотетический раствор со свойствами предельно разбавленного раствора , но с концентрацией всех реагентов, равной единице. Для чистого вещества и жидкости стандартная энергия Гиббса совпадает с энергией Гиббса образования этих веществ. Величина стандартной энергии Гиббса реакции может быть использована для приближенной оценки термодинамической возможности протекания реакции в данном направлении, если начальные условия не сильно отличаются от стандартных. Кроме того, сравнивая величины стандартной энергии Гиббса нескольких реакций, можно выбрать наиболее предпочтительные, для которых имеет наибольшую по модулю отрицательную величину.

Кинетическое описание

Для обратимой химической реакции константа равновесия K eq может быть выражена через константы скорости прямых и обратных реакций. Рассмотрим элементарную обратимую химическую реакцию первого порядка

A ⇄ B {\displaystyle \mathrm {A} \rightleftarrows \mathrm {B} }

По определению, равновесие задаётся условием v 1 = v − 1 {\displaystyle v_{1}=v_{-1}} , то есть равенством скоростей прямой и обратной реакций.

В соответствии с законом действующих масс v = k ∏ a j n j {\displaystyle v=k{\prod }{a_{j}}^{n_{j}}}

Где k - константа скорости соответствующей реакции, а a j n j {\displaystyle {a_{j}}^{n_{j}}} - равновесные активности реагентов этой реакции, возведённые в степени, равные их стехиометрическим коэффициентам

можно записать условие равновесия в виде

1 = v 1 v − 1 = k 1 ∏ a A n A k − 1 ∏ a B n B {\displaystyle 1={\frac {v_{1}}{v_{-1}}}={\frac {k_{1}{\prod }{a_{A}}^{n_{A}}}{k_{-1}{\prod }{a_{B}}^{n_{B}}}}} 1 = k 1 k − 1 ⋅ ∏ a A n A ∏ a B n B = k 1 k − 1 ⋅ (K e q) − 1 {\displaystyle 1={\frac {k_{1}}{k_{-1}}}\cdot {\frac {\prod {a_{A}}^{n_{A}}}{\prod {a_{B}}^{n_{B}}}}={\frac {k_{1}}{k_{-1}}}\cdot \left(K_{eq}\right)^{-1}}

(см. термодинамическое описание константы равновесия), что возможно только если

K e q = k 1 k − 1 {\displaystyle K_{eq}={\frac {k_{1}}{k_{-1}}}}

Это важное соотношение даёт одну из «точек соприкосновения» химической кинетики и химической термодинамики .

Множественные равновесия

В случае, когда в системе устанавливается сразу несколько равновесий (то есть одновременного или последовательного протекает нескольких процессов), каждый из них может быть охарактеризован своей константой равновесия, из которых можно выразить общую константу равновесия для всей совокупности процессов. Можно рассмотреть такую ситуацию на примере ступенчатой диссоциации двухосновной кислоты H 2 A. Водный раствор её будет содержать частицы (сольватированные) H + , H 2 A, HA - and A 2- . Процесс диссоциации протекает в две ступени:

H 2 A ⇌ H A − + H + : K 1 = [ H A − ] [ H + ] [ H 2 A ] {\displaystyle H_{2}A\rightleftharpoons HA^{-}+H^{+}:K_{1}={\frac {}{}}} H A − ⇌ A 2 − + H + : K 2 = [ A 2 − ] [ H + ] [ H A − ] {\displaystyle HA^{-}\rightleftharpoons A^{2-}+H^{+}:K_{2}={\frac {}{}}}

K 1 и K 2 - константы первой и второй ступеней диссоциации соответственно. Из них можно выразить "полную" константу равновесия, для процесса полной диссоциации :

H 2 A ⇌ A 2 − + 2 H + : K 1 + 2 = [ A 2 − ] [ H + ] 2 [ H 2 A ] = K 1 K 2 {\displaystyle H_{2}A\rightleftharpoons A^{2-}+2H^{+}:K_{1+2}={\frac {^{2}}{}}=K_{1}K_{2}}

Другой пример множественного равновесия - анализ системы осадок /растворимое комплексное соединение . Допустим, имеется равновесие

A g I 2 − (a q) ⇌ A g I (s o l i d) + I − (a q) {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons AgI(solid)+I^{-}(aq)}

Реакцию можно представить в виде двух последовательных равновесий - равновесия разложения комплексного иона на составляющие его ионы, которое характеризуется "константой нестойкости" (величина, обратная "константе устойчивости" β):

A g I 2 − (a q) ⇌ A g + (a q) + 2 I − (a q) : K 1 = α A g + α I − 2 α A g I 2 − = β − 1 {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons Ag^{+}(aq)+2I^{-}(aq):K_{1}={\frac {\alpha _{Ag^{+}}\alpha _{I^{-}}^{2}}{\alpha _{AgI_{2}^{-}}}}=\beta ^{-1}}

и равновесия перехода ионов из объёма растворителя в кристаллическую решётку

A g + (a q) + I − (a q) ⇌ A g I (s o l i d) : K 2 = α A g I α A g + α I − {\displaystyle Ag^{+}(aq)+I^{-}(aq)\rightleftharpoons AgI(solid):K_{2}={\frac {\alpha _{AgI}}{\alpha _{Ag^{+}}\alpha _{I^{-}}}}}

с учётом того, что для твёрдых веществ активность принимается равной 1 , а в разбавленных растворах активности могут быть заменены на молярные концентрации, получаем

K 2 = α A g I α A g + α I − = 1 [ A g + ] [ I − ] = 1 K s p {\displaystyle K_{2}={\frac {\alpha _{AgI}}{\alpha _{Ag^{+}}\alpha _{I^{-}}}}={\frac {1}{}}={\frac {1}{K_{sp}}}}

где K s p {\displaystyle K_{sp}} - произведение растворимости

Тогда суммарное равновесие будет описываться константой

A g I 2 − (a q) ⇌ A g I (s o l i d) + I − (a q) : K = α A g I α I − α A g I 2 − = K 1 ⋅ K 2 = 1 β ⋅ K s p {\displaystyle AgI_{2}^{-}(aq)\rightleftharpoons AgI(solid)+I^{-}(aq):K={\frac {\alpha _{AgI}\alpha _{I^{-}}}{\alpha _{AgI_{2}^{-}}}}=K_{1}\cdot K_{2}={\frac {1}{\beta \cdot K_{sp}}}}

И значение этой константы будет условием преобладания в равновесной смеси комплексного соединения или твёрдой соли: как и выше, если K << 1, то в равновесной смеси большая часть ионов связана в комплексное соединение, если K >> 1, то в равновесном состоянии в системе большая часть ионов связана в кристаллической фазе. реакции, протекающей, соответственно, при постоянном давлении или при постоянном объёме. Если Δ H > 0 {\displaystyle \Delta H>0} (тепловой эффект положителен, реакция эндотермическая), то температурный коэффициент константы равновесия d ln ⁡ K p d T {\displaystyle {\frac {d\ln K_{p}}{dT}}} тоже положителен, то есть с ростом температуры константа равновесия эндотермической реакции увеличивается, равновесие сдвигается вправо (что вполне согласуется с принципом Ле Шателье).

Методы расчета константы равновесия

Расчётные методы определения константы равновесия реакции обычно сводятся к вычислению тем или иным способом стандартного изменения энергии Гиббса в ходе реакции (ΔG 0 ), а затем использованию формулы:

Δ G 0 = − R T ln ⁡ K 0 {\displaystyle \Delta G^{0}=-RT\ln K^{0}} , где R {\displaystyle R} - универсальная газовая постоянная .

При этом следует помнить, что энергия Гиббса - функция состояния системы, то есть она не зависит от пути процесса, от механизма реакции, а определяется лишь начальным и конечным состояниями системы. Следовательно, если непосредственное определение или расчёт ΔG 0 для некоторой реакции по каким-либо причинам затруднены, можно подобрать такие промежуточные реакции, для которых ΔG 0 известно или может быть легко определено, и суммирование которых даст рассматриваемую реакцию (см. Закон Гесса). В частности, в качестве таких промежуточных реакций часто используют реакции образования соединений из элементов.

Энтропийный расчёт изменения энергии Гиббса и константы равновесия реакции

Энтропийный метод расчёта ΔG реакции является одним из самых распространённых и удобных . Он основан на соотношении:

Δ G T = Δ H T − T Δ S T {\displaystyle \Delta G_{T}=\Delta H_{T}-T\Delta S_{T}}

или, соответственно, для стандартного изменения энергии Гиббса:

Δ G T 0 = Δ H T 0 − T Δ S T 0 {\displaystyle \Delta G_{T}^{0}=\Delta H_{T}^{0}-T\Delta S_{T}^{0}}

Здесь ΔH 0 при постоянных давлении и температуре равно тепловому эффекту реакции, методы расчёта и экспериментального определения которого известны - см., например, уравнение Кирхгофа :

Δ H T 0 = Δ H 298 0 + ∫ 298 T Δ C p d T {\displaystyle \Delta H_{T}^{0}=\Delta H_{298}^{0}+\int _{298}^{T}\Delta C_{p}dT}

Необходимо получить изменение энтропии в ходе реакции. Эта задача может быть решена несколькими способами, например:

  • По термическим данным - с опорой на тепловую теорему Нернста и с использованием сведений о температурной зависимости теплоёмкости участников реакции. Например, для веществ, при нормальных условиях находящихся в твёрдом состоянии:
S 298 = S 0 + ∫ 0 T C p (s o l) T d T {\displaystyle S_{298}=S_{0}+\int _{0}^{T}{\frac {C_{p(sol)}}{T}}dT} где S 0 = 0 (постулат Планка) и тогда, соответственно, S 298 = ∫ 0 T C p (s o l) T d T {\displaystyle S_{298}=\int _{0}^{T}{\frac {C_{p(sol)}}{T}}dT} . (здесь индекс sol - от англ. solid, "твердый"). При некоторой заданной температуре T: S T 0 = S 298 0 + ∫ 298 T C p (s o l) T d T {\displaystyle S_{T}^{0}=S_{298}^{0}+\int _{298}^{T}{\frac {C_{p(sol)}}{T}}dT} Для жидких или газообразных при нормальной температуре веществ, или, в более общем случае, для веществ, в интервале температур от 0 (или 298) и до T претерпевающих фазовый переход , следует учитывать изменение энтропии, связанное с этим фазовым переходом. S 298 0 = A ln ⁡ M + B {\displaystyle S_{298}^{0}=A\ln M+B} где A и B - табличные константы, зависящие от типа рассматриваемого соединения, M - молекулярная масса.

Итак, если известны Δ H 298 0 {\displaystyle \Delta H_{298}^{0}} , Δ S 298 0 {\displaystyle \Delta S_{298}^{0}} и температурные зависимости теплоёмкости, Δ G T 0 {\displaystyle \Delta G_{T}^{0}} может быть рассчитано по формуле:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 + ∫ 298 T Δ C p d T − T ∫ 298 T Δ C p d T T {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}+\int _{298}^{T}\Delta C_{p}dT-T\int _{298}^{T}\Delta C_{p}{\frac {dT}{T}}}

Несколько упрощённый вариант этой формулы получают, считая сумму теплоёмкостей веществ не зависящей от температуры и равной сумме теплоёмкостей при 298 K:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 + Δ C p 298 (T − 298) − T ln ⁡ T 298 {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}+\Delta C_{p~298}(T-298)-T\ln {\frac {T}{298}}}

И еще более упрощённый расчёт проводят, приравнивая сумму теплоёмкостей к нулю:

Δ G T 0 = Δ H 298 0 − T Δ S 298 0 {\displaystyle \Delta G_{T}^{0}=\Delta H_{298}^{0}-T\Delta S_{298}^{0}}

Переход от Δ G T 0 {\displaystyle \Delta G_{T}^{0}} к константе равновесия осуществляется по приведённой выше формуле.

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих массв простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

v пр = k пр С А а С В b ,

а скорость обратной реакции - с концентрациями продуктов уравнением

v обр = k обр С D d С E e .

При достижении равновесия эти скорости равны друг другу:

v пр = v обр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационнойи обозначается К с . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активностивеществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, К с и К а практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между К р и К с существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Тогда для реакции в общем виде после замены парциальных давлений на концентрации получим



Заменяя выражение (d + с) - (а + b) на равное ему Dn , получим окончательное выражение

К р = К с (RT ) D n или К с = К р (RT ) - D n ,

где Dn - изменение числа молей газообразных веществ в ходе реакции:

Dn = ån i прод (г) - ån i исх (г) ).

Если Dn = 0, т. е. процесс идёт без изменения числа молей газообразных веществ, и К р = К с .

Например, для реакции гидратации этилена, протекающей в газовой фазе:

C 2 H 4 (г) + H 2 O (г) Û C 2 H 5 OH (г) ,



В данном случае Dn = 1 - (1 + 1) = -1. Значит, соотношение между константами может быть выражено таким уравнением:

К р = К с (RT ) - 1 или К с = К р RT .

Таким образом, зная К р этой реакции при каждой данной температуре, можно вычислить значение К с и наоборот.

Размерность констант равновесия зависит от способа выражения концентрации (давления) и стехиометрии реакции. Часто она может вызывать недоумение, например, в рассмотренном примере [моль - 1 м 3 ] для К с и [Па - 1 ] для К р , но в этом нет ничего неверного. При равенстве сумм стехиометрических коэффициентов продуктов и исходных веществ константа равновесия будет безразмерной.

К С = [С] р [D] q ? [А] m [В] n , (4.24)

где [С], [D], [А], [В] - равновесные концентрации.

В обратимых химических реакциях равновесие устанавливается в тот момент, когда отношение произведения концентраций продуктов, возведенных в степени, равные стехиометрическим коэффициентам, к произведению концентраций исходных веществ, также возведенных в соответствующие степени, равно некоторой постоянной величине, называемой константой химического равновесия.

В выражение константы равновесия, как и в выражение скорости реакции, не входят концентрации веществ, образующих конденсированные фазы или присутствующих в большом избытке. Например, для реакции:

Fe 3 O 4 (т) + 4Н 2 (г) 3Fe (т) + 4Н 2 О (г) (4.25)

К С = [Н 2 О] 4 / [Н 2 ] 4 , (4.26)

где, - равновесные парциальные давления газообразных веществ.

К Р = К С (RT) Дн, (4.28)

где Дн - изменение числа молей газообразных веществ.

Энергия Гиббса химической реакции связана с константой равновесия

КР = exp(-ДG0/ RT), (4.29)

ДG 0 = -2,3RTlg К Р, (4.30)

ДG = -2,3RTlg К С. (4.31)

ДG 0 = -5,71·lg К Р. (4.32)

Константа химического равновесия зависит от природы реагирующих веществ и от температуры. Изменение внешних условий (концентрации, температуры, давления) вызывает смещение химического равновесия в системе и переход ее в новое равновесное состояние.

Направление смещения химического равновесия определяется принципом Ле Шателье: если на систему, находящуюся в состоянии химического равновесия, производить какое-либо внешнее воздействие (изменять концентрацию, температуру, давление), то в этой системе самопроизвольно возникают процессы, стремящиеся ослабить произведенное воздействие.

Принцип Ле Шателье следует из закона действующих масс. Если система находится при постоянной температуре, то константа равновесия при внешних воздействиях остается постоянной. Поэтому любое изменение равновесных концентраций (парциальных давлений) одного или нескольких веществ должно приводить к такому изменению равновесных концентраций (парциальных давлений) других веществ, чтобы соблюдалось постоянство константы равновесия.

  • 1. Влияние концентраций (парциальных давлений) компонентов системы. При увеличении концентрации одного из компонентов равновесие системы нарушается. При этом ускорится реакция его расходования. Процесс будет протекать до тех пор, пока не установится новое равновесие. Новые равновесные концентрации всех компонентов будут такими, чтобы соотношение между ними, определяемое константой равновесия, оставалось постоянным.
  • 2. Влияние общего давления в системе. Если в результате реакции изменяется число молей газообразных веществ, то изменение общего давления в системе вызывает смещение равновесия. В соответствии с принципом Ле Шателье увеличение общего давления в системе вызывает смещение равновесия в сторону уменьшения числа молей газообразных веществ, т.е. в сторону уменьшения давления.
  • 3. Влияние температуры. С увеличением температуры равновесие смещается в сторону эндотермических реакций, т.е. реакций, протекание которых обеспечивает поглощение теплоты.

химический реакция тепло нейтрализация

Количественная характеристика, показывающая направление реакции и смещение концентрации веществ, называется константой равновесия химической реакции. Константа равновесия зависит от температуры и природы реагентов.

Обратимые и необратимые реакции

Все реакции можно разделить на два типа:

  • обратимые , одновременно протекающие в двух взаимно противоположных направлениях;
  • необратимые , протекающие в одном направлении с полным расходом хотя бы одного исходного вещества.

При необратимых реакциях обычно образуются нерастворимые вещества в виде осадка или газа. К таким реакциям относятся:

  • горение:

    C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O;

  • разложение:

    2KMnO 4 → K 2 MnO 4 + MnO 2 + H 2 O;

  • присоединение с образованием осадка или газа:

    BaCl 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaCl.

Рис. 1. Образование осадка BaSO 4 .

Обратимые реакции возможны только в определённых неизменных условиях. Исходные вещества дают новое вещество, которое тут же распадается на составные части и собирается вновь. Например, в результате реакции 2NO + O 2 ↔ 2NO 2 оксид азота (IV) легко разлагается на оксид азота (II) и кислород.

Равновесие

Через определённое время скорость обратимой реакции замедляется. Достигается химическое равновесие - состояние, при котором не происходит изменения концентрации исходных веществ и продуктов реакции с течением времени, так как скорость прямой и обратной реакций уравниваются. Равновесие возможно только в гомогенных системах, то есть все реагирующие вещества являются либо жидкостями, либо газами.

Рассмотрим химическое равновесие на примере реакции взаимодействия водорода с йодом:

  • прямая реакция -

    H 2 + I 2 ↔ 2HI;

  • обратная реакция -

    2HI ↔ H 2 + I 2 .

Как только смешиваются два реагента - водород и йод - йодоводорода ещё не существует, так как простые вещества только вступают в реакцию. Большое количество исходных веществ активно реагируют друг с другом, поэтому скорость прямой реакции будет максимальной. При этом обратная реакция не протекает, и скорость её равна нулю.

Скорость прямой реакции можно выразить графически:

ν пр = k пр ∙ ∙ ,

где k пр - константа скорости прямой реакции.

Со временем реагенты расходуются, их концентрация снижается. Соответственно, скорость прямой реакции уменьшается. Одновременно с этим увеличивается концентрация нового вещества - йодоводорода. При накоплении он начинает разлагаться, и скорость обратной реакции повышается. Её можно выразить как

ν обр = k обр ∙ 2 .

Йодоводород в квадрате, так как коэффициент молекулы равен двум.

В определённый момент скорости прямой и обратной реакции уравниваются. Наступает состояние химического равновесия.

Рис. 2. График зависимости скорости реакции от времени.

Равновесие можно сместить либо в сторону исходных веществ, либо в сторону продуктов реакции. Смещение под воздействием внешних факторов называется принципом Ле Шателье. На равновесие влияют температура, давление, концентрация одного из веществ.

Расчёт константы

В состоянии равновесия обе реакции идут, но при этом концентрации веществ находятся в равновесии (образуются равновесные концентрации), так как уравновешенны скорости (ν пр = ν обр).

Химическое равновесие характеризуется константой химического равновесия, которая выражается сводной формулой:

K p = k пр / k обр = const.

Константы скорости реакции можно выразить через соотношение скорости реакции. Возьмём условное уравнение обратной реакции:

aA + bB ↔ cC + dD.

Тогда скорости прямой и обратной реакции будут равны:

  • ν пр = k пр ∙ [A] p a ∙ [B] p b
  • ν обр = k обр ∙ [C] p c ∙ [D] p d .

Соответственно, если

ν пр = ν обр,

k пр ∙ [A] p a ∙ [B] p b = k обр ∙ [C] p c ∙ [D] p d .

Отсюда можно выразить соотношение констант:

k обр / k пр = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Это соотношение равно константе равновесия:

K p = [C] p c ∙ [D] p d / [A] p a ∙ [B] p b .

Рис. 3. Формула константы равновесия.

Величина показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции.

Что мы узнали?

Реакции в зависимости от конечных продуктов классифицируются на обратимые и необратимые. Обратимые реакции протекают в обе стороны: исходные вещества образуют конечные продукты, которые разлагаются на исходные вещества. В ходе реакции скорости прямой и обратной реакций уравновешиваются. Такое состояние называется химическим равновесием. Оно может быть выражено как соотношение произведения равновесных концентраций продуктов реакции к произведению разновесных концентраций исходных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.8 . Всего получено оценок: 193.

Лекция 3

Химическое равновесие. Закон действующих масс. Константа химического равновесия и способы ее выражения.

Химическое равновесие

В большинстве случаев химические реакции не протекают так глубоко, чтобы реагенты полностью превратились в продукты. Реакции идут до равновесия, при котором в системе имеются как продукты, так и непрореагировавшие исходные вещества, и не наблюдается дальнейшей тенденции к изменению их концентраций. Иногда количество продукта в равновесной смеси настолько превышает количество не вступивших в реакцию исходных веществ, что с практической точки зрения реакция завершается. Практически до конца доходят только такие реакции, при которых как минимум один из продуктов удаляется из сферы реакции (например, выпадает в осадок или выделяется из раствора в виде газа). Но во множестве важных случаев реакционная смесь при равновесии содержит значительные концентрации как продуктов, так и исходных веществ.

Химическое равновесие – это термодинамическое равновесие в системе, в которой возможны прямые и обратные химические реакции.

Существуют термодинамический и кинетический критерии химического равновесия. С кинетической точки зрения при химическом равновесии скорости всех реакций, идущих в двух противоположных направлениях, равны между собой, поэтому в системе не наблюдается изменения макроскопических параметров, в том числе концентраций реагирующих веществ.

С термодинамической точки зрения химическое равновесие характеризуется достижением минимального и не изменяющегося во времени значения энергии Гиббса (или энергии Гельмгольца).


Знание основных закономерностей учения о химическом равновесии совершенно необходимо химику-технологу. В промышленности, например, на химико-фармацевтических заводах, бесполезно строить сложные установки для получения тех или иных веществ, если термодинамические расчёты показывают, что реакция имеет тенденцию идти в “неправильном” направлении. Кроме того, при определении экономичности и рентабельности производства необходимо знать, как получить максимальный выход целевого продукта.

Подлинный механизм как прямой, так и обратной реакции во многих случаях сложен и часто в деталях или полностью не известен. К счастью для химиков, для того, чтобы получить правильные выводы о протекании химических процессов, нет необходимости знать настоящий механизм реакции.

Предсказание направления химической реакции, а также вычисление теоретического равновесного выхода её продуктов и состава равновесной реакционной смеси в зависимости от исходного состава, температуры и давления и является главной задачей учения о химическом равновесии.

Константа равновесия

Произвольную обратимую химическую реакцию можно описать уравнением вида:

aA + bB Û dD + eE

В соответствии с законом действующих масс в простейшем случае скорость прямой реакции связана с концентрациями исходных веществ уравнением

vпр = k пр С Аа С Вb,

а скорость обратной реакции - с концентрациями продуктов уравнением

vобр = kобр С Dd С Ee .

При достижении равновесия эти скорости равны друг другу:

vпр = vобр

Отношение друг к другу констант скорости прямой и обратной реакций будет равно константе равновесия :


Так как это выражение основано на учёте количества реагентов и продуктов реакции, оно является математической записью закона действующих масс для обратимых реакций .

Константа равновесия, выраженная через концентрации реагирующих веществ, называется концентрационной и обозначается Кс . Для более строгого рассмотрения следует вместо концентраций использовать термодинамические активности веществ а = fC (где f - коэффициент активности). При этом речь идёт о так называемой термодинамической константе равновесия


При малых концентрациях, когда коэффициенты активности исходных веществ и продуктов близки к единице, Кс и Ка практически равны друг другу.

Константа равновесия реакции, протекающей в газовой фазе, может быть выражена через парциальные давления р веществ, участвующих в реакции:


Между Кр и Кс существует соотношение, которое можно вывести таким образом. Выразим парциальные давления веществ через их концентрации с помощью уравнения Менделеева - Клапейрона:

pV = nRT ,

откуда p = (n /V )RT = CRT .

Тогда для реакции в общем виде после замены парциальных давлений на концентрации получим




Заменяя выражение (d + с) - (а + b) на равное ему D n , получим окончательное выражение

Кр = Кс (RT )D n или Кс = Кр (RT )-D n ,

где D n - изменение числа молей газообразных веществ в ходе реакции:

D n = å ni прод (г) - å ni исх (г) ).

Если D n = 0, т. е. процесс идёт без изменения числа молей газообразных веществ, и Кр = Кс .

Например, для реакции гидратации этилена, протекающей в газовой фазе:

C2H4 (г) + H2O (г) Û C2H5OH (г),



В данном случае D n = 1 - (1 + 1) = -1. Значит, соотношение между константами может быть выражено таким уравнением:

Кр = Кс (RT )- 1 или Кс = Кр RT .

Таким образом, зная Кр этой реакции при каждой данной температуре, можно вычислить значение Кс и наоборот.

Расчёты с применением констант равновесия

Константы равновесия используются главным образом для получения ответов на следующие вопросы:

1. Должна ли самопроизвольно протекать реакция при определённых условиях?

2. Какова будет концентрация продуктов (равновесный выход) после установления в системе равновесия?

Определение направления протекания обратимых реакций

Так как константа равновесия представляет собой отношение констант скорости прямой и обратной реакций, то само её значение говорит о направлении процесса. Так, если константа равновесия больше единицы, то при данных условиях самопроизвольно будет осуществляться прямая реакция, если же она меньше единицы - обратная реакция.

В соответствии с принципом Ле-Шателье положение равновесия может быть смещено при изменении условий, в которых протекает реакция. Поэтому в общем случае можно оценить смещение равновесия при изменении соотношения начальных количеств веществ, участвующих в реакции. Если соотношение концентраций реагирующих веществ в начальный момент обозначить P :


то по соотношению Z и Кс можно предсказать направление реакции при заданных условиях эксперимента:

при P < K самопроизвольно протекает прямая реакция;

при P > K самопроизвольно протекает обратная реакция;

при P = K система находится в равновесии.

Чем больше значение константы равновесия отличается от единицы, тем в большей степени равновесие реакции сдвинуто в соответствующую сторону (вправо при К > 1 и влево при К < 1).

Факторы, влияющие на равновесие. Принцип Ле-Шателье -

Брауна

При равновесии прямая и обратная реакции точно компенсируют друг друга. Но насколько чувствительна эта компенсация к изменениям условий реакций? Каким способом можно изменить состояние равновесия? Эти вопросы имеют большое практическое значение, если требуется повысить выход полезного продукта реакции, напри­мер, лекарственного вещества, или, наоборот, уменьшить выход нежелательного продукта.

Если имеется возможность непрерывно выводить продукты из реакционной смеси (раствора) в виде газа или осадка, а также с помощью таких технологических операций, как вымораживание, вымывание и пр., то тем самым реагирующая система может постоянно удерживаться в неравновесном, несбалансированном состоянии. В этих условиях возникает необходимость во все новых количествах реагентов и происходит непрерывное образование продуктов. Такой способ нарушения равновесия в сторону получения желаемого продукта осуществляется без изменения константы равновесия. Но часто можно повысить выход продуктов, увеличивая константу равновесия.

Один из способов увеличения константы равновесия - изменение температуры . Так как в большинстве случаев скорости прямой и обратной реакции зависят от Т , константа равновесия тоже проявляет зависимость от температуры. Строго говоря, изменение температуры одновременно изменяет скорость и прямой, и обратной реакции. Но, если повышение температуры ускоряет прямую реакцию в большей степени, чем обратную, то константа равновесия при этом увеличится.

Температурная зависимость положения равновесия является одним из примеров общего принципа подвижного химического равновесия, называемого принципом Ле-Шателье (или Ле-Шателье - Брауна):

Если на систему, находящуюся в состоянии химического равновесия, оказывается внешнее воздействие, положение равновесия смещается в такую сторону, чтобы противодействовать эффекту этого воздействия .

Принцип Ле-Шателье относится и к другим способам воздействия на равновесие, например, к изменению давления, но он имеет качественный характер. Количественно зависимость константы равновесия реакции от различных факторов выражается уравнениями изотермы, изобары и изохоры химической реакции, выведенными Я. Вант-Гоффом.

Влияние на равновесие начального состава реакцион­ной

смеси. Уравнение изотермы химической реакции

Максимальная работа реакции, идущей в газовой фазе при постоянных температуре и давлении, является алгебраической суммой работ, совершённых всеми участвующими в реакции веществами при переходе от начальных парциальных давлений к равновесным.

Рассмотрим газовую реакцию, выражаемую в общем виде уравнением

aA + bB Û dD + eE.

Давление р в системе с помощью уравнения Менделеева - Клапейрона может быть выражено через объём V и температуру T :

p = nRT /V ,

откуда, принимая, что суммарное число молей всех компонентов равно 1, получаем для работы расширения

pdV = (RT /V )dV ,

Так как максимальная полезная работа может быть вычислена при интегрировании выражения: V2

А’max = ò pdV ,

получаем


а так как А’max = -D Gr ,

то можно записать:


Для процессов, идущих при постоянном объёме, можно получить аналогичные выражения, в которые входит максимальная работа и изменение энергии Гельмгольца в ходе реакции. При этом парциальные давления заменяются начальными концентрациями веществ:



Уравнения (4.1) - (4.4), выведенные Я. Вант-Гоффом, называются урав­не­ниями изотермы химической реакции . Они дают возможность опре­делить, в каком направлении и до какого предела может протекать реакция в рассматриваемых условиях при заданном составе реакционной смеси при постоянной температуре.

Для стандартных условий, когда исходные парциальные давления (или исходные концентрации или активности) всех веществ-участников реакции равны единице, уравнения изотермы будут выглядеть так:

А ’max = RT ln Kp ; D Gor = - RT ln Kp (4.5)

А max = RT ln K с ; D А o r = - RT ln K с .

Отсюда следует, что определяя стандартную величину D Gor или D А o r для реакции, можно легко вычислить её константу равновесия.

Влияние на равновесный выход изменения объёма

и давления реакционной смеси

Для реакций, идущих в газовой фазе, об изменении объёма реакционной смеси можно судить по изменению числа молей реагирующих веществ

D n = å ni прод - å ni исх

Возможны три случая, соответствующих различным типам химических реакций:

а) D n < 0 (реакция идет с уменьшением объёма). Например, реакция синтеза аммиака :

N2 (г) + 3H2 (г) Û 2NH3 (г) ; D n = 2 - (1 + 3) = -2

В соответствии с принципом Ле-Шателье уменьшение объёма (при увеличении давления) будет сдвигать равновесие этой и подобных реакций вправо, а увеличение объёма (при уменьшении давления) - влево.

б) D n > 0 (реакция идет с увеличением объёма). Например, реакция разложения метанола:

CH3OH (г) Û CO (г) + 2H2 (г) ; D n = (1 + 2) - 1 = 2

В этом случае уменьшение объёма (или увеличение давления) будет сдвигать равновесие влево, а увеличение объёма (при уменьшении давления) - вправо.

в) D n = 0 (реакция идет без изменения объёма). Например, реакция хлора с бромоводородом:

Cl2 (г) + 2HBr (г) Û Br2 (г) + 2HCl (г) ; D n = (1 + 2) - (1 + 2) = 0

На выходе продуктов таких реакций изменение объёма (давления) реакционной смеси не сказывается.

Химическое равновесие в гетерогенных системах

Рассмотренные ранее закономерности относятся, главным образом, к гомогенным реакциям, т. е. к реакциям с участием веществ, находящихся в одном физическом состоянии - в виде газа или в виде раствора. Равновесия, в которых принимают участие вещества, находящиеся в двух или нескольких физических состояниях (например, газ с жидкостью или с твёрдым веществом), называются гетерогенными равновесиями.

В качестве примера рассмотрим разложение карбоната кальция CaCO3, используемого в фармации в качестве антацидного средства (сниж кислотность). Это удобная модель для рассмотрения разложения различных твёрдых веществ, в том числе и лекарственных, идущего с образованием газообразных продуктов:

CaCO3 (т) Û CaO (т) + CO2 (г)

В соответствии с законом действующих масс выражение для константы равновесия этой реакции можно написать так:


Парциальные давления CaO и CaCO3 в газовой фазе, во-первых, очень малы, а во-вторых, остаются практически постоянными в любой момент протекания реакции. Это значит, что пока твёрдые CaCO3 и CaO находятся в контакте с газом, их влияние на равновесие будет неизменным. В этом случае константа равновесия не зависит от количества твёрдой фазы. Можно разделить обе части выражения для константы равновесия на величину p CaO/p CaCO3 и принять, что

K p = p CO2 ,

где K p = Kp p CaC03/p CaO - модифицированная константа равновесия; при этом парциальные давления CaCO3 и CaO входят в величину K p в неявном виде.

Если парциальное давление СО2 над CaCO3, при данной температуре поддерживается меньшим, чем значение K p , то весь CaCO3 превратится в CaO и CO2; если же парциальное давление p CO2 больше, чем K p , то весь СaO превратится в CaCO3. Равновесное же парциальное давление CO2, равное K p при данной температуре, называется давлением диссоциации .

При достижении давления СО2 1 атм равновесие в данной реакции сдвигается в сторону диссоциации СаСО3, т. е. разложения карбоната кальция. это происходит при температуре 897оС:

Подобные рассуждения и понятие давления диссоциации могут быть распространены и на другие гетерогенные реакции с участием твёрдых веществ. В том случае, когда лекарственное вещество (в порошке или в таблетках) может реагировать с газами, находящимися в воздухе (H2O, O2, CO2), или разлагаться с их выделением, необходимо следить, чтобы парциальное давление этих газов и паров в атмосфере склада было меньше, чем давление диссоциации (или соответствующая константа равновесия K p ).