Меню Рубрики

Как найти наименьшую среднюю линию. Трапеция, средняя линия трапеции, треугольник

Средняя линия треугольника. Здравствуйте, друзья! Сегодня теоретический материал, связан он с треугольником. В составе экзамена имеется группа заданий, в которых используется свойство его средней линии. Причём не только в задачах с треугольниками, но и с трапециями. Была , в которой сии факты я предлагал просто запомнить, теперь подробнее…

Что такое средняя линия треугольника и каковы её свойства?

Определение. Средняя линия треугольника – это отрезок, соединяющий середины сторон треугольника.

Понятно, что средних линий в треугольнике три. Покажем их:


Без всяких доказательств вы уже, наверное, заметили, что все четыре образованные треугольника равны. Это так, но подробнее об этом поговорим далее.

Теорема . Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.

Доказательство:

1. Давайте рассмотрим треугольники BMN и BAC. По условию у нас BM=MA, BN=NC. Можем записать:

Следовательно треугольники подобны по двум пропорциональным сторонам и углу между ними (второй признак подобия). Что из этого следует? А то что:

По признаку параллельности прямых MN||AC.

2. Также из подобия треугольников следует, что

То есть MN в два раза меньше. Доказано!

Решим типичную задачу.

В треугольнике ABC точки M, N, K – середины сторон AB, BC, AC. Найти периметр треугольника ABC, если MN=12, MK=10, KN=8.

Решение. Конечно, прежде всего следует проверить существование треугольника MNK (а значит и существование треугольника АВС). Сумма двух меньших сторон должна быть более третьей стороны, записываем 10+8>12. Выполнятся, следовательно треугольник существует.

Построим эскиз:

Таким образом периметр треугольника АВС равен 24+20+16=60.

*Теперь подробнее о треугольниках полученных при построении всех трёх средних линий. Их равенство легко доказывается. Посмотрите:

Равны они по трём сторонам. Конечно, и другие признаки здесь применимы. Получаем, что

Как это свойство используется в заданиях включённых в состав экзамена? Особо хочется заострить внимание на задачах по стереометрии. Есть такие типы, в которых речь идет о треугольной призме.

Например, сказано что плоскость проходит через середины сторон основания и она параллельна третьему ребру основания. Ставятся вопросы о изменении площади поверхности призмы, её объёма и другие.

Так вот. Зная и понимая информацию изложенную выше вы сразу же определите, что эта плоскость отсекает от основания указанной призмы одну четвёртую часть и задачу решите устно. Вот с такими задачами.

На этом всё! Всего доброго!

Скачать материал статьи

С уважением, Александр Крутицких.

Средняя линия треугольника – это отрезок, соединяющий середины 2-х его сторон. Соответственно, каждого у треугольника три средних линии. Зная качество средней линии, а также длины сторон треугольника и его углы, дозволено обнаружить длину средней линии.

Вам понадобится

  • Стороны треугольника, углы треугольника

Инструкция

1. Пускай в треугольнике ABC MN – средняя линия, соединяющая середины сторон AB (точка M) и AC (точка N).По свойству средняя линия треугольника, соединяющая середины 2-х сторон, параллельна третьей стороне и равна её половине. Значит, средняя линия MN будет параллельна стороне BC и равна BC/2.Следственно, для определения длины средней линии треугольника довольно знать длину стороны именно этой третьей стороны.

2. Пускай сейчас вестимы стороны, середины которых соединяет средняя линия MN, то есть AB и AC, а также угол BAC между ними. Потому что MN – средняя линия, то AM = AB/2, а AN = AC/2.Тогда по теореме косинусов объективно: MN^2 = (AM^2)+(AN^2)-2*AM*AN*cos(BAC) = (AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2. Отсель, MN = sqrt((AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2).

3. Если знамениты стороны AB и AC, то среднюю линию MN дозволено обнаружить, зная угол ABC либо ACB. Пускай, скажем, знаменит угол ABC. Потому что по свойству средней линии MN параллельна BC, то углы ABC и AMN – соответствующие, и, следственно, ABC = AMN. Тогда по теореме косинусов: AN^2 = AC^2/4 = (AM^2)+(MN^2)-2*AM*MN*cos(AMN). Следственно, сторону MN дозволено обнаружить из квадратного уравнения (MN^2)-AB*MN*cos(ABC)-(AC^2/4) = 0.

Совет 2: Как обнаружить сторону квадратного треугольника

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Вам понадобится

  • – лист бумаги;
  • – ручка;
  • – таблицы Брадиса;
  • – калькулятор.

Инструкция

1. Обнаружьте сторону прямоугольного треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного треугольника .

2. Если по условиям заданы размеры катетов, разыщите длину гипотенузы. Для этого с поддержкой калькулятора извлеките квадратный корень из суммы катетов, всякий из которых заранее возведите в квадрат.

3. Вычислите длину одного из катетов, если вестимы размеры гипотенузы и иного катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы в квадрате и вестимого катета, также возведенного в квадрат.

4. Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и углами прямоугольного треугольника .

5. Обнаружьте катеты при помощи основных тригонометрических функций: a = c*sin ?, b = c*cos ?, где а – катет, противолежащий к углу?, b – катет, прилежащий к углу?. Сходственным образом посчитайте размер сторон треугольника , если заданы гипотенуза и иной острый угол: b = c*sin ?, a = c*cos ?, где b – катет, противолежащий к углу?, а – катет, прилежащий к углу?.

6. В случае, когда вестим катет a и прилежащий к нему острый угол?, не забывайте, что в прямоугольном треугольнике сумма острых углов неизменно равна 90°: ? + ? = 90°. Разыщите значение угла, противолежащего к катету а: ? = 90° – ?. Либо воспользуйтесь тригонометрическими формулами приведения: sin ? = sin (90° – ?) = cos ?; tg ? = tg (90° – ?) = ctg ? = 1/tg ?.

7. Если вестим катет а и противолежащий к нему острый угол?, при помощи таблиц Брадиса, калькулятора и тригонометрических функций вычислите гипотенузу по формуле: c=a*sin ?, катет: b=a*tg ?.

Видео по теме

На рисунке 1 показаны два треугольника. Треугольник ABC подобен треугольнику A1B1C1. И прилежащие стороны пропорциональны, то есть AB относится к A1B1 также как AC относится к A1C1. Их этих двух условий и следует подобие треугольников.

Как найти среднюю линию треугольника — признак параллельности прямых

На рисунке 2 показаны прямые a и b, секущая c. При этом образуются 8 углов. Углы 1 и 5 соответственные, если прямые параллельны, то соответственные углы равны, и наоборот.

Как найти среднюю линию треугольника

На рисунке 3, M середина AB, а N середина AC, BC основание. Отрезок MN — называется средней линии треугольника. Сама же теорема гласит — Средняя линия треугольника параллельная основанию и равна его половине.


Для того чтобы доказать, что MN — средняя линия треугольника, нам понадобится второй признак подобия треугольников и признак параллельности прямых.

Треугольник AMN подобен треугольнику ABC, по второму признаку. В подобных треугольниках соответственные углы равны, угол 1 равен углу 2, а эти углы являются соответственными при пересечении двух прямых секущей, следовательно, прямые параллельны, MN параллельно BC. Угол A общий, AM/AB = AN/AC = ½

Коэффициент подобия этих треугольников ½, из этого следует что ½ = MN/BC, MN = ½ BC


Вот мы и нашли среднюю линию треугольника, и доказали теорему о средней линии треугольника, если вам до сих пор не понятно, как найти среднюю линию, смотрите видео ниже.

Средняя линия треугольника — это отрезок, соединяющий середины 2-х его сторон. Соответственно, каждого у треугольника три средних линии. Зная качество средней линии, а также длины сторон треугольника и его углы, дозволено обнаружить длину средней линии.

Вам понадобится

  • Стороны треугольника, углы треугольника

Инструкция

1. Пускай в треугольнике ABC MN — средняя линия, соединяющая середины сторон AB (точка M) и AC (точка N).По свойству средняя линия треугольника, соединяющая середины 2-х сторон, параллельна третьей стороне и равна её половине. Значит, средняя линия MN будет параллельна стороне BC и равна BC/2.Следственно, для определения длины средней линии треугольника довольно знать длину стороны именно этой третьей стороны.

2. Пускай сейчас вестимы стороны, середины которых соединяет средняя линия MN, то есть AB и AC, а также угол BAC между ними. Потому что MN — средняя линия, то AM = AB/2, а AN = AC/2.Тогда по теореме косинусов объективно: MN^2 = (AM^2)+(AN^2)-2*AM*AN*cos(BAC) = (AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2. Отсель, MN = sqrt((AB^2/4)+(AC^2/4)-AB*AC*cos(BAC)/2).

3. Если знамениты стороны AB и AC, то среднюю линию MN дозволено обнаружить, зная угол ABC либо ACB. Пускай, скажем, знаменит угол ABC. Потому что по свойству средней линии MN параллельна BC, то углы ABC и AMN — соответствующие, и, следственно, ABC = AMN. Тогда по теореме косинусов: AN^2 = AC^2/4 = (AM^2)+(MN^2)-2*AM*MN*cos(AMN). Следственно, сторону MN дозволено обнаружить из квадратного уравнения (MN^2)-AB*MN*cos(ABC)-(AC^2/4) = 0.

Квадратный треугольник больше верно именуется прямоугольным треугольником. Соотношения между сторонами и углами этой геометрической фигуры детально рассматриваются в математической дисциплине тригонометрии.

Вам понадобится

  • — лист бумаги;
  • — ручка;
  • — таблицы Брадиса;
  • — калькулятор.

Инструкция

1. Обнаружьте сторону прямоугольного треугольника с поддержкой теоремы Пифагора. Согласно этой теореме, квадрат гипотенузы равен сумме квадратов катетов: с2 = a2+b2 , где с – гипотенуза треугольника , a и b – его катеты. Дабы применить это уравнение, надобно знать длину всяких 2-х сторон прямоугольного треугольника .

2. Если по условиям заданы размеры катетов, разыщите длину гипотенузы. Для этого с поддержкой калькулятора извлеките квадратный корень из суммы катетов, всякий из которых заранее возведите в квадрат.

3. Вычислите длину одного из катетов, если вестимы размеры гипотенузы и иного катета. При помощи калькулятора извлеките квадратный корень из разности гипотенузы в квадрате и вестимого катета, также возведенного в квадрат.

4. Если в задаче заданы гипотенуза и один из прилежащих к ней острых углов, используйте таблицы Брадиса. В них приведены значения тригонометрических функций для большого числа углов. Воспользуйтесь калькулятором с функциями синуса и косинуса, а также теоремами тригонометрии, которые описывают соотношения между сторонами и углами прямоугольного треугольника .


5. Обнаружьте катеты при помощи основных тригонометрических функций: a = c*sin ?, b = c*cos ?, где а – катет, противолежащий к углу?, b – катет, прилежащий к углу?. Сходственным образом посчитайте размер сторон треугольника , если заданы гипотенуза и иной острый угол: b = c*sin ?, a = c*cos ?, где b – катет, противолежащий к углу?, а – катет, прилежащий к углу?.

6. В случае, когда вестим катет a и прилежащий к нему острый угол?, не забывайте, что в прямоугольном треугольнике сумма острых углов неизменно равна 90°: ? + ? = 90°. Разыщите значение угла, противолежащего к катету а: ? = 90° – ?. Либо воспользуйтесь тригонометрическими формулами приведения: sin ? = sin (90° – ?) = cos ?; tg ? = tg (90° – ?) = ctg ? = 1/tg ?.

7. Если вестим катет а и противолежащий к нему острый угол?, при помощи таблиц Брадиса, калькулятора и тригонометрических функций вычислите гипотенузу по формуле: c=a*sin ?, катет: b=a*tg ?.

Видео по теме

Четырёхугольник, у которого только две стороны параллельны называются трапецией .

Параллельные стороны трапеции называются её основаниями , а те стороны, которые не параллельны, называются боковыми сторонами . Если боковые стороны равны, то такая трапеция является равнобедренной. Расстояние между основаниями называется высотой трапеции.

Средняя Линия Трапеции

Средняя линия - это отрезок, соединяющий середины боковых сторон трапеции. Средняя линия трапеции параллельна её основаниям.

Теорема:

Если прямая, пересекающая середину одной боковой стороны, параллельна основаниям трапеции, то она делит пополам вторую боковую сторону трапеции.

Теорема:

Длина средней линии равна среднему арифметическому длин её оснований

MN || AB || DC
AM = MD; BN = NC

MN средняя линия, AB и CD - основания, AD и BC - боковые стороны

MN = (AB + DC)/2

Теорема:

Длина средней линии трапеции равна среднему арифметическому длин её оснований.

Основная задача : Доказать, что средняя линия трапеции делит пополам отрезок, концы которого лежат в середине оснований трапеции.

Средняя Линия Треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется средней линией треугольника. Она параллельна третьей стороне и её длина равна половине длины третьей стороны.
Теорема : Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.

AM = MC and BN = NC =>

Применение свойств средней линии треугольника и трапеции

Деление отрезка на определённое количество равных частей.
Задача: Разделить отрезок AB на 5 равных частей.
Решение:
Пусть p это случайный луч, у которого начало это точка А, и который не лежит на прямой AB. Мы последовательно откладываем 5 равных сегментов на p AA 1 = A 1 A 2 = A 2 A 3 = A 3 A 4 = A 4 A 5
Мы соединяем A 5 с B и проводим такие прямые через A 4 , A 3 , A 2 и A 1 , которые параллельны A 5 B. Они пересекают AB соответственно в точках B 4 , B 3 , B 2 и B 1 . Эти точки делят отрезок AB на 5 равных частей. Действительно, из трапеции BB 3 A 3 A 5 мы видим, что BB 4 = B 4 B 3 . Таким же образом, из трапеции B 4 B 2 A 2 A 4 получаем B 4 B 3 = B 3 B 2

В то время как из трапеции B 3 B 1 A 1 A 3 , B 3 B 2 = B 2 B 1 .
Тогда из B 2 AA 2 следует, что B 2 B 1 = B 1 A. В заключении получаем:
AB 1 = B 1 B 2 = B 2 B 3 = B 3 B 4 = B 4 B
Ясно, что для разделения отрезка AB на другое количество равных частей, нам нужно проецировать то же самое количество равных сегментов на луч p. И далее продолжать вышеописанным способом.