Меню Рубрики

Изотерма адсорбции генри. Адсорбция

Теория мономолекулярной адсорбции. Изотерма Ленгмюра.

Изотерма Генри

Изотермы адсорбции

Величина адсорбции Г выражается в моль/г адсорбента или в моль/1см 2 (м 2) его поверхности.

Зависимость величины адсорбции Г от концентрации или давления адсорбата в газовой фазе при Т = const выражается уравнением изотермы адсорбции . Для получения простейших закономерностей используют однородные поверхности (к примеру, сажу, прокаленную при 3000 0 С). Часто при адсорбции газов образуется мономолекулярный слой. При адсорбции на однородной поверхности концентрация адсорбата в любой точке поверхности постоянна. Рассмотрим несколько изотерм адсорбции.

При малых давлениях (концентрациях) адсорбата величина адсорбции Г пропорциональна давлению или концентрации адсорбата:

Г = kР или Г = kС .

Это уравнение изотермы адсорбции Генри . Часто величину адсорбции характеризуют степенью заполнения поверхности данным адсорбатом Θ. Тогда уравнение Генри может быть выражено через Θ:

Θ = kP или Θ = kC ,

т. е. заполнение поверхности пропорционально давлению адсорбата в газовой фазе Р или его концентрации С в «области Генри», т. е. в области небольших Р или С .

Адсорбция бывает нелокализованная (молекулы адсорбата могут свободно перемещаться вдоль поверхности адсорбента). Локализованная адсорбция - это химическая или сильная физическая адсорбция, при которой адсорбированная молекула прочно связана с адсорбентом и не может перемещаться вдоль поверхности.

Мономолекулярная локализованная адсорбция описывается уравнением изотермы адсорбции Ленгмюра:

где Г - величина адсорбции газа, Г ∞ - максимально возможное количество адсорбированного вещества при образовании мономолекулярного слоя адсорбата͵ т. е. предельная адсорбция, в - константа адсорбционного равновесия, Р - равновесное давление газа. Уравнение (1.3), выраженное через степень заполнения Θ, имеет вид

Степень заполнения определяется по соотношению:

Θ = Г/Г ∞ .

Изотерма адсорбции Ленгмюра может быть выражена черезобъем поглощенного газа:

где V - объем адсорбированного газа, V m - максимально возможный объем адсорбата͵ полностью покрывающего поверхность 1 г адсорбента. Объемы V и V m приведены к нормальным условиям (н. у.).

Площадь поверхности 1 г адсорбента S уд - удельная поверхность:

где N A - число Авогадро, V m выражен в литрах, 22,4 л - мольный объем газа при н. у., S 0 - площадь, которую на поверхности адсорбента занимает 1 молекула адсорбата.

Адсорбция из раствора описывается уравнением Ленгмюра вида

гдеС – равновесная концентрация адсорбированного вещества в растворе, моль/м 3 .

Уравнение Ленгмюра можно привести к линœейному виду, что позволит графически определить его константы в и Г ∞ .

Рис. 1 . Зависимость = f(P) к уравнению Ленгмюра

Это уравнение прямой в координатах (рис. 1.). Отрезок, отсекаемый на вертикальной оси, равен, actg φ = Г ∞ . Вместо Г и Г ∞ бывают использованы V и V m соответственно, а вместо Р для адсорбции из раствора должна быть взята С. Величина Г ∞ позволяет рассчитать удельную поверхность адсорбента по формуле:

S уд = Г ∞ N A S 0 .

При адсорбции происходит выделœение теплоты. Теплота адсорбции вычисляется по уравнению Клапейрона - Клаузиуса, так как зависимость давления, крайне важного для получения одной и той же степени заполнения Θ (или величины адсорбции Г ) на 1 г адсорбента͵ от температуры аналогична зависимости «давление пара - температура»:

Интегрирование последнего выражения в пределах от Т 1 до Т 2 приводит к

, откуда

Уравнение изотермы адсорбции Ленгмюра на практике применимо в достаточно ограниченном диапазона величин и лишь в редких случаях она выполняется во всœем интервале степени заполнения поверхности от 0 до 1. Это говорит о том, что поверхность адсорбента͵ в основном, энергетически неоднородна.Об этом также свидетельствует зависимость теплоты адсорбции от степени заполнения, чего согласно теории Ленгмюра быть не должно. Вместе с тем, теория мономолекулярной адсорбции не может объяснить изотерму S – образной формы, наблюдаемую на практике, из которой следует, что адсорбция не заканчивается образованием монослояадсорбата͵ а продолжается дальше. Последнее явление получило объяснение с позиции полимолекулярной адсорбции. Было предложено несколько теорий полимолекулярной адсорбции, однако, наиболее приемлемой в настоящее время является теория БЭТ

) — зависимость количества адсорбированного вещества (величины ) от парциального давления этого вещества в газовой фазе (или концентрации раствора) при постоянной температуре.

Описание

Экспериментальные изотермы адсорбции являются наиболее распространенным способом описания адсорбционных явлений. Методы получения адсорбционных данных для построения изотерм адсорбции основаны на измерении количества газа (жидкости), удаленного из газовой (жидкой) фазы при адсорбции, а также на различных способах определения количества адсорбата (адсорбированное вещество) на адсорбента (адсорбирующее вещество), например, волюметрический метод, гравиметрический метод и др.

Различают шесть основных типов изотерм адсорбции (см. рис.). Тип I характерен для микропористых с относительно малой долей внешней поверхности. Тип II указывает на полимолекулярную адсорбцию на непористых или макропористых адсорбентах. Тип III характерен для непористых с малой энергией взаимодействия адсорбент-адсорбат. Типы IV и V аналогичны типам II и III, но для пористых адсорбентов. Изотермы типа VI характерны для непористых адсорбентов с однородной поверхностью.

Изотермы адсорбции используются для расчета материалов, среднего размера или среднего размера нанесенных частиц, распределения пор или частиц по размерам.

Существует несколько методов математического выражения изотерм адсорбции, различающихся моделями, использованными для описания процесса адсорбции. При малых степенях для однородной поверхности уравнение изотермы адсорбции имеет вид уравнения Генри: a = Kp , где a - величина адсорбции, p - давление газа, K - константа. При средних степенях покрытия может быть применено эмпирическое уравнение Фрейндлиха: a = kp n , где k и n - константы.

Строгая теория изотермы адсорбции была предложена И. Ленгмюром для модели монослойной адсорбции на однородной поверхности, в которой можно пренебречь силами притяжения между молекулами адсорбата и их подвижностью вдоль поверхности. Уравнение изотермы Ленгмюра имеет вид: a = a m bp /(1 + bp ), где b - адсорбционный коэффициент, зависящий от энергии адсорбции и температуры; a m - емкость монослоя.

Дальнейшее развитие теории состояло в исключении того или иного допущения, использованного Ленгмюром. Так, С. Брунауэром, П. Эмметом и Э. Теллером была предложена теория полимолекулярной адсорбции (); Т. Хилл и Я. де Бур разработали теорию, учитывающую взаимодействие между адсорбированными молекулами (изотерма Хилла–де-Бура), и т. д.

Иллюстрации


Авторы

  • Смирнов Андрей Валентинович
  • Толкачев Николай Николаевич

Источники

  1. Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.
  2. Sing K. S.W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations) // Pure Appl. Chem. 1985. V. 57, №4. P. 603–619.
  3. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука, 1999. - 470 с.

Газ, не действующий химически на жидкость, может тем не менее поглощаться ею при соприкосновении с ней. Такое явление называется абсорбцией.

Для конкретности представим себе что на дне закрытого сосуда находится вода, а над водой - газообразный кислород. Некоторые молекулы кислорода будут проникать в воду и странствовать между ее молекулами. Другие кислородные молекулы будут, наоборот, вылетать из жидкости в газовую атмосферу над ней. Когда вода и кислород находятся в равновесии, то число молекул кислорода, переходящих за единицу времени из газообразной фазы в жидкую, будет равно числу молекул, переходящих за то же время из жидкой фазы в газообразную.

Если давление кислорода увеличим вдвое, то число кислородных молекул, имеющих шансы быть поглощенными жидкостью, увеличится вдвое (если поглощенное ранее количество молекул газа не так велико чтобы препятствовать дальнейшему поглощению его).

Отсюда вытекает закон установленный английским ученым Генри в 1803 г. при не слишком больших давлениях газа абсорбируемое количество газа (при данной температуре) пропорционально его давлению.

Легко сообразить, что, поскольку справедлив закон Генри, объем газа абсорбированного при данной температуре данным количеством жидкости, будет при всяком давлении выражаться одним и тем же числом Например, 1 объем воды поглощает при объем углекислого газа, 0,035 объема кислорода, 0,017 объема азота и т. д. Числа эти называют коэффициентами абсорбции.

В связи с относительно большим поглощением водой углекислоты до недавнего времени предполагали, что водяные растения дышат кислородом, который они усваивают из поглощенной водой углекислоты. Однако в 1940 г. советские ученые Виноградов и Тейсс показали, что зеленые растения в воде дышат кислородом воды, а не

Вследствие того, что коэффициент абсорбции, т. е. растворимость, кислорода в воде в два раза больше, чем коэффициент абсорбции азота, состав воздуха в воде («водяного воздуха») существенно отличается от состава атмосферного воздуха. Атмосферный воздух содержит по объему 78% азота и 21% кислорода; воздух, выделяемый из воды, содержит 63% азота и 36% кислорода. Обогащенность «водяного воздуха» кислородом имеет, по-видимому, большое биологическое значение.

Подобно тому как в системе жидкости и ее насыщенного пара повышение температуры благоприятствует переходу молекул из жидкой фазы в парообразную, так в системе жидкости и газа, ею абсорбируемого, повышение температуры благоприятствует переходу молекул газа из жидкости в газообразную фазу; это значит, что с повышением температуры коэффициент абсорбции уменьшается. Впрочем, многие металлы представляют собой исключение из этого правила.

Способностью соды абсорбировать при пониженной температуре и повышен ном давлении значительное количество углекислоты широко пользуются для изготовления шипучих напитков.

Известно, что при постепенном нагревании воды из нее выделяется все больше и больше газовых пузырьков; это - результат уменьшения коэффициента абсорбции. Кипячением можно совершенно освободить воду от абсорбированных ею газов.

Из смеси газов жидкость поглощает такое количество каждого газа, какое соответствует его парциальному давлению. Поэтому, например, количество поглощаемой углекислоты не возрастет, если в занимаемое ею над водой пространство накачать воздух.

Твердые металлы также обладают способностью поглощать газы. Так, платина, железо и другие металлы в калильном жару поглощают водород, а железо легко поглощает также окись углерода газы эти удерживаются металлами и по охлаждении последних (это явление называется окклюзией).

Строго говоря, под абсорбцией понимают только те случаи поглощения газов, когда поглощаемый газ растворяется в объеме поглощающего вещества (безразлично - жидкости или твердого тела). При поглощении газов твердыми мелкозернистыми или пористыми телами большая часть поглощенного газа не распределяется по всему объему, а удерживается в весьма уплотненном виде на поверхности пор и зерен; такое поглощение газа называют адсорбцией (§ 131). Таким образом, абсорбция - это, в сущности, растворение газа, а адсорбция - его уплотнение на микроповерхности тел. Следует отметить, однако, что при поглощении газов металлами, имеющими микрозернистое строение, явления адсорбции и абсорбции не всегда могут быть точно разграничены.


Закон Генри можно сформулировать следующим образом: при разбавлении системы (уменьшение давления) коэффициент распределения стремится к постоянному значению, равному константе распределении Генри. Относительно величины адсорбции А этот закон запишется так:

Эти уравнения представляют собой изотермы адсорбции вещества при малых концентрациях. В соответствии с ними закон Генри можно сформулировать так: величина адсорбции при малых давлениях газа (концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации).

Отклонения от закона Генри, выражаемые изменениями коэффициентов активности в фазах, обычно не позволяют описать и прогнозировать ход изотерм с увеличением концентрации.

(давления) адсорбата. Чтобы получить теоретическую изотерму адсорбции, описывающую более широкую область концентраций, необходимо использование представлений о механизме адсорбции и конкретных моделей.

Большую долю отклонений коэффициента активности адсорбата в поверхностном слое от единицы можно учесть, используя представление об адсорбции как о квазихимической реакции между адсорбатом и адсорбционными центрами поверхности адсорбента. В этом заключается основная идея адсорбционной теории Ленгмюра. Это положение уточняется следующими допущениями:

1) адсорбция локализована (молекулы не перемещаются по поверхности) на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбата; в результате образуется мономолекулярный слой;

2) адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна;

3) адсорбированные молекулы не взаимодействуют друг с другом.

Лиофильные дисперсные системы. Классификация и общая характеристика пав. Термодинамика и механизм мицеллообразования. Строение мицелл пав в водных и углеводородных средах. Солюбилизация.

Все дисперсные системы в зависимости от механизма процесса их образования по классификации П. А. Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроизвольное образование гетерогенной свободнодисперсной системы), и лиофобные, получающиеся в результате диспергирования и конденсации с пересыщением (принудительное образование гетерогенной свободноднсперсной системы).

Если с увеличением концентрации вещества поверхностное натяжение на границе раздела фаз понижается, то такое вещество называют поверхностно-активным. Для таких веществ поверхностная активность

Наличие гидрофильной и олеофильной частей у молекул ПАВ является характерной отличительной особенностью их строения. По способности к диссоциации в водных растворах поверхностно-активные вещества делят на ионогенные и неионогенные. В свою очередь ионогенные ПАВ подразделяют на анионные, катионные и амфолитпые (амфотерные).

1) Анионные ПАВ диссоциируют в воде с образованием поверхностно-активного аниона.

2) Катионные ПАВ диссоциируют в воде с образованием поверхностно-активного катиона.

3) Амфолитные ПАВ содержат две функциональные группы, одна из которых имеет кислый, а другая основный характер, например карбоксильную и аминную группы. В зависимости от рН среды амфолитные ПАВ проявляют анионоактивные или катионоактивные свойства.

Все ПАВ относительно поведения их в воде делят на истинно растворимые и коллоидные.

Истинно растворимые ПАВ в растворе находятся в молекулярно-дисперсном состоянии вплоть до концентраций, соответствующих их насыщенным растворам и разделению системы на две сплошные фазы.

Главной отличительной особенностью коллоидных ПАВ является способность образовывать термодинамически устойчивые (лиофильные) гетерогенные дисперсные системы (ассоциативные, или мицеллярные, коллоиды). К основным свойствам коллоидных ПАВ, обусловливающим их ценные качества и широкое применение, относятся высокая поверхностная активность; способность к самопроизвольному мицеллообразованию - образованию лиофильных коллоидных растворов при концентрации ПАВ выше некоторого определенного значения, называемого критической концентрацией мицеллообразования (KKM); способность к солюбилизации - резкому увеличению растворимости веществ в растворах коллоидных ПАВ вследствне их «внедрения» внутрь мицеллы; высокая способность стабилизировать различные дисперсные системы.

При концентрациях выше KKM молекулы ПАВ собираются в мицеллы (ассоциируют) и раствор перехолит в мицеллярную (ассоциативную) коллоидную систему.

Под мицеллой ПАВ понимают ассоциат дифильных молекул, лиофильные группы которых обращены к соответствующему растворителю, а лиофобные группы соединяются друг с другом, образуя ядро мицеллы. Число молекул, составляющих мицеллу, называют числом ассоциации, а общую сумму молекулярных масс молекул в мицелле, или произведение массы мицеллы на число Авогадро, - мицеллярной массой. Определенное ориентирование дифильных молекул ПАВ в мицелле обеспечивает минимальное межфазное натяжение на границе мицелла - среда.

П
ри концентрациях ПАВ в водном растворе, несколько превышающихKKM, согласно представлениям Гартли образуются сферические мицеллы (мицеллы Гартли). Внутренняя часть мицелл Гартли состоит из переплетающихся углеводородных радикалов, полярные группы молекул ПАВ обращены в водную фазу. Диаметр таких мицелл равен удвоенной длине молекул ПАВ. Число молекул в мицелле быстро растет в пределах узкого интервала концентраций, а при дальнейшем увеличении концентрации практически не изменяется, а увеличивается число мицелл. Сферические мицеллы могут содержать от 20 до 100 молекул и более.

При увеличении концентрации ПАВ мицеллярная система проходит ряд равновесных состояний, различающихся по числам ассоциации, размерам и форме мицелл. При достижении определенной концентрации сферические мицеллы начинают взаимодействовать между собой, что способствует их деформации. Мицеллы стремятся принять цилиндрическую, дискообразную, палочкообразную, пластинчатую форму.

Мицеллообразование в неводных средах, как правило, является результатом действия сил притяжения между полярными группами ПАВ и взаимодействия углеводородных радикалов с молекулами растворителя. Образующиеся мицеллы обращенного вида содержат внутри негидратированные или гидратированные полярные группы, окруженные слоем из углеводородных радикалов. Число ассоциации (от 3 до 40) значительно меньше, чем для водных растворов ПАВ. Как правило, оно растет с увеличением углеводородного радикала до определенного предела.

Явление растворения веществ в мицеллах ПАВ называется солюбилизацией. Способ включения молекул солюбилизата в мицеллы в водных растворах зависит от природы вещества. Неполярные углеводороды, внедряясь в мицеллы, располагаются в углеводородных ядрах мицелл. Полярные органические вещества (спирты, амины, кислоты) встраиваются в мицеллу между молекулами ПАВ так, чтобы их полярные группы были обращены к воде, а липофильные части молекул ориентированы параллельно углеводородным радикалам ПАВ. Возможен и третий способ включения солюбилизата в мицеллы, особенно характерный для неионогенных ПАВ. Молекулы солюбилизата, например фенола, не проникают внутрь мицелл, а закрепляются на их поверхности, располагаясь между беспорядочно изогнутыми полиоксиэтиленовыми цепями.

Солюбилизация - самопроизвольный и обратимый процесс; данной концентрации ПАВ и температуре соответствует вполне определенное насыщение раствора солюбилизатом. В результате солюбилизации получаются устойчивые дисперсные системы подобные самопроизвольно образующимся ультрамнкрогетерогенным эмульсиям.

Определите поверхностную и полную (внутреннюю) энергию 4 г водяного тумана, имеющего частицы с дисперсностью 5·10 7 м -1 , t = 20º C , σ = 72 мДж/м 2 ; d σ/ dT = ‑ 0,16 мДж/(м 2 ·К); ρ = 1000 кг/м 3 .

Экзаменационный билет № 10

Теopия полимолекулярной адсорбции БЭТ: исходные положения, вывод уравнения изотермы и его анализ. Линейная форма уравнения БЭТ. Определение удельной поверхности адсорбентов, катализаторов и других пористых тел.

Уравнение Ленгмюра можно использовагь только при условии, что адсорбция вещества сопровождается образованием мономолекулярного слоя.

В большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и влияние поверхностных сил может распространяться на второй, третий и последующие адсорбционные слои, в результате проходит полимолекулярная адсорбция.

Современная форма уравнения полимолекулярной адсорбции - основного уравнения обобщенной теории Ленгмюра - была предложена Брунауэром, Эмметом и Теллером.

В этой теории дополнительным допущением к тем, которые были положены в основу вывода уравнения изотермы Ленгмюра, является представление об образовании на поверхности адсорбента «последовательных комплексов» адсорбционных центров с одной, двумя, тремя и т. д. молекулами адсорбата. Тогда процесс адсорбции можно представить в виде последовательных квазихимических реакций:

Константы равновесия этих реакций соответственно равны

Обозначим:

Общее число активных центров на адсорбенте, или емкость монослоя, будет равна

После ряда вычислений с применением теории рядов, окончательно получим:

Данное соотношение является основным уравнением обобщенной теории Ленгмюра и называется уравнением полимолекулярной адсорбции БЭТ.

При обработке экспериментальных результатов уравнение БЭТ обычно используют в линейной форме:

Оно позволяет графически определить оба постоянных параметра A ∞ и С:

Экспериментальное определение A ∞ позволяет рассчитать удельную поверхность адсорбента (поверхность единицы массы адсорбента): .

Для данной пары адсорбент-адсорбат величины адсорбции a или Г - определяется двумя основными термодинамическими параметрами состояния: температурой T и давлением p при газообразном адсорбате или температурой T и концентрацией C при адсорбции из растворов. Все три величины - адсорбция a, температура T и давление p (концентрация C) - связаны функциональной зависимостью, называемой термическим уравнением обратимой сорбции:

f(a,p,T)=0, или (Г,с,Т)=0.

В конкретных случаях эти уравнения имеют различный вид. В теории адсорбции часто рассматривают адсорбционное равновесие при условии, что один из параметров, входящих в термическое уравнение, поддерживают постоянным. Адсорбция, если она выражена не как избыток, а как полное содержание всегда возрастает с повышением равновесного давления (концентрации). Так как адсорбция - процесс экзотермический, то при повышении температуры величина адсорбции снижается (рис. 2.5.4 , на котором ).

Уравнения, связывающее величину адсорбции с температурой при постоянном равновесном давлении a=f или постоянной равновесной концентрации Г= носит название соответственно изобары и изопикны адсорбции (рис.2.5.4 , ). Уравнение вида p= (изостера адсорбции) связывает равновесное давление с температурой при постоянном адсорбированным количестве (рис.2.5.4.).

Рис.2.5.4. Основные виды кривых адсорбционного равновесия: изотермы (Т=const), изобары (р=const) или изопикны (если С=const), изостеры (а=const).

Теория адсорбционного равновесия ставит задачей на базе определенной модели процесса адсорбции составить ее математическое описание. Уравнение в идеале должно количественно описывать зависимость равновесной величины адсорбции от концентрации адсорбата в объемной фазе при различных температурах, а также правильно предсказывать изменение теплоты адсорбции от заполнения адсорбента.

Наиболее часто при этом находят уравнение изотермы адсорбции . Форма изотермы адсорбции на твердых телах зависит от многих параметров: свойств адсорбента и адсорбата. взаимодействие адсорбент-адсорбат, взаимодействия молекул адсорбата между собой в газовой фазе и в адсорбированном состоянии. В области малых давлений (концентраций) и соответствующих им малых заполнений поверхности взаимодействие между молекулами адсорбата незначительно, и зависимость a=f сводится к простейшей форме, называемой законом Генри :



A = kp , или a=kC (2.5.1)

Величина адсорбции пропорциональна концентрации адсорбтива в растворе. Коэффициент пропорциональности k - коэффициент Генри - является мерой интенсивности адсорбции.

При больших давлениях (концентрациях) и соответствующих им больших заполнениях адсорбцию часто выражают эмпирическим уравнением Фрейндлиха :

где -количество адсорбированного вещества, m-масса адсорбента, и n –константы, характерные для каждой адсорбированной системы, причем 1/n всегда правильная дробь (0<1/n<1). По Г. Фрейндлиху n не зависит от заполнения, хотя это утверждение не вполне точно. Этим эмпирическим уравнением часто пользуются для ориентировочных расчетов адсорбции.

Уравнение Фрейндлиха применимо для адсорбции недиссоциируемых или слабо диссоциируемых веществ, ког­да вещества адсорбируются в виде целых молекул. Такие явления происходят при молекулярной адсорбции, которая характеризуется следующим правилом: чем лучше данный растворитель смачивает твер­дую поверхность, тем меньше адсорбция молекул растворен­ного вещества из растворителя на данной поверхности, и на­оборот.



Уравнение Фрейндлиха (2.5.2) нельзя применять при очень малых и очень больших концентрациях, когда кривая зависимости адсорбции от кон­центрации принимает вид пря­мой линии и показатель 1/n становится равным нулю или единице. В логарифмирован­ном виде уравнение Фрейндлиха представляет собой пря­мую (рис. 2.5.5 ). По отрезку, отсекаемому прямой на оси ординат, определяем значение lnк, а по тангенсу угла на­клона прямой к оси ординат - значение 1/п.

Первое теоретическое уравнение изотермы адсорбции было предложено И. Лэнгмюром в 1914 г . Это уравнение до сих пор не потеряло своего значения. Теория Лэнгмюра основана на трех основных предположениях:

1.Адсорбция происходит на дискретных адсорбционных центрах, которые могут иметь различную природу.

2.При адсорбции соблюдается строгое стехиометрическое условие - на одном центре адсорбируется одна молекула. (Это означает, что по Лэнгмюру на поверхности может образовываться только один адсорбционный слой, называемый мономолекулярным.)

3.Адсорбционные центры энергетически однородны и независимы, т.е. адсорбция на одном центре не влияет на адсорбцию на других центрах. (Это означает, что дифференциальная теплота адсорбции постоянна, и, что силами взаимодействия адсорбированных молекул между собой можно пренебречь.)

На основе этих трех положений можно различными путями получить уравнение изотермы адсорбции. Молекулы в газовой фазе находятся в состоянии теплового движения. Они могут сталкиваться с адсорбционными центрами и адсорбироваться на них. Скорость этого процесса (т.е. число молекул, адсорбирующихся за единицу времени) пропорциональна давлению газа и числу свободных центров на поверхности. Если общее число центров a, то при адсорбции, равной a, число свободных центров равно (a m -а).

Поэтому .

Адсорбированные молекулы колеблются около центров. Вследствие флуктуаций энергии некоторые адсорбированные молекулы отрываются от центров и возвращаются в газовую фазу. Этот процесс называется десорбцией. Скорость десорбции пропорциональна числу адсорбированных молекул:

При равновесии или

(2.5.3)

Отсюда, вводя обозначения: ,

где - относительное заполнение поверхности) получим:

Или . (2.5.4)

Полученное уравнение изотермы адсорбции называется уравнением Лэнгмюра. Константа b - константа адсорбционного равновесия называется адсорбционным коэффициентом.

Если измерить поверхность поглощающего ве­щества (порошки, пористые материалы и др.) затрудни­тельно, то адсорбцию рассчитывают на единицу массы, т. е. на 1г адсорбента, принимая, что масса пропорциональна его поверхности.

Если при постоянной температуре на оси абсцисс откладывать величину давления газа, а на оси ор­динат - количество адсорбированного вещества, то можно построить изотерму адсорбции. На процесс адсорбции дав­ление влияет по-разному (рис.2.5.6 ). Адсорбция быстро воз­растает в области малых давлений. Количество адсорбиро­ванного вещества при дальнейшем повышении давления увеличивается в меньшей степени. При достаточно высоких давлениях изотермы адсорбции стремятся к прямой, парал­лельной оси абсцисс. Это означает, что при достижении на­сыщения дальнейшее повышение давления не влияет на ко­личество адсорбированного вещества.

Рис.2.5.6. Адсорбция по Лэнгмюру

Крутой подъем начальной части изотермы свидетельст­вует о том, что небольшое увеличение концентрации адсорбируемого вещества сопровождается значительным увели­чением адсорбции. При дальнейшем повышении кон­центрации рост адсорбции замедляется и затем приостанавливается: адсорбция достигает максимума.

Как и все обратимые процессы, адсорбция подчиняется принципу подвижного равновесия. Так, при повышении тем­пературы равновесие сдвигается в сторону эндотермическо­го процесса. Это означает, что с повышением температуры равновесие сдвигается в сторону десорбции и количество адсорбированного вещества уменьшается. С повышением давления, как правило, увеличивается количество адсорби­рованного газа.

Теория адсорбции «БЭТ». С.Брунауэр, П.Эммет и Э.Теллер отказались от второго допущения И.Лэнгмюра, приводящего к мономолекулярной адсорбции. Для случая, когда адсорбтив находится при температуре ниже критической, т.е. в парообразном состоянии, эти авторы разработали теорию полимолекулярной адсорбции, имеющую большое практическое значение. С. Брунауэр проанализировал многочисленные реальные изотермы адсорбции и предложил их классификацию. Согласно этой классификации можно выделить пять основных типов изотерм адсорбции, изображенных на рисунке 2.5.7 .

Рис.2.5.7. Типы изотерм адсорбции по классификации Брунауэра.

Изотерма типа I отражает мономолекулярную адсорбцию (описываемая уравнением Лэнгмюра). Изотермы типа II и III обычно связывают с образованием при адсорбции многих слоев, т.е. полимолекулярной адсорбцией. Различие между этими изотермами обусловлены различным соотношением энергии взаимодействия адсорбат-адсорбент и адсорбат-адсорбат. Изотермы типа IV и V отличаются от изотерм II и III тем, что в первых случаях адсорбция возрастает бесконечно при приближении давления пара к давлению насыщения, а в других случаях имеет место конечная адсорбция при давлениях насыщения. Изотермы типа II и III обычно характерны для адсорбции на непористом адсорбенте, а типа IV и V - на пористом твердом теле. Все пять типов изотерм адсорбции описываются теорией полимолекулярной адсорбции "БЭТ", названной так по начальным буквам фамилии ее авторов.

Теория БЭТ сохраняет Лэнгмюровскую концепцию о динамическом характере адсорбции. Адсорбция считается полислойной. Молекулы первого слоя адсорбируются на поверхности адсорбента в результате межмолекулярного взаимодействия адсорбент-адсорбат. Каждая адсорбированная молекула первого адсорбционного слоя может в свою очередь являться центром адсорбции молекул второго слоя, те - молекул третьего и т.д. Так формируются второй и последующие слои. Начало образования второго и последующих слоев возможно и при незаконченном первом. Каждый адсорбционный слой находится в динамическом равновесии с окружающей средой и соседними слоями.

Если обозначить через и т.д. площади поверхности адсорбента, покрытые 0 1 2 слоями адсорбированных молекул, то вся площадь поверхности адсорбента будет равна сумме площадей с разным числом слоев

Составив уравнение адсорбционного равновесия для каждого слоя, и просуммировав их, авторы теории получили, в конечном счете, уравнение изотермы адсорбции:

Вопросы для закрепления.

  1. Дайте определение явления адсорбции.
  2. В чем состоит различие между адсорбцией и абсорбцией?
  3. Объясните сходство и различие явлений физической и химической адсорбции.
  4. От каких факторов зависит процесс адсорбции?
  5. Объясните причину возникновения различных вариантов физической адсорбции.
  6. Как проявляются адсорбционные процессы в нефтегазовых системах?
  7. Что такое изотермы адсорбции? Запишите формулы, описывающие изотермы адсорбции Генри, Фрейндлиха и Лэнгмюра.
  8. Поясните графическое описание изотерм теории БЭТ.